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Formulas are obtained for the mean first passage times (as well as their dispersion) in random 
walks from the origin to an arbitrary lattice point on a periodic space lattice with periodic boundary 
conditions. Generally this time is proportional to the number of lattice points. 

The number of distinct points visited after n steps on a k-dimensionallattice (with k ~ 3) when n 
is large is aln + a2n t + a3 + a.n- t + .... The constants al - a. have been obtained for walks on a 
simple cubic lattice when k = 3 and al and ~ are given for simple and face-centered cubic lattices. 
Formulas have also been obtained for the number of points visited r times in n steps as well as the 
average number of times a given point has been visited. 

The probability F(c) that a walker on a one-dimensional lattice returns to his starting point before 
being trapped on a lattice of trap concentration c is F(c) = 1 + [c/(1 - c)] log c. 

Most of the results in this paper have been derived by the method of Green's functions. 

ANUMBER of problems in solid-state physics 
are directly or indirectly related to various 

aspects of random walks on periodic space lattices. 
The theory of such random walks on infinite lattices 
was first discussed by Polya 1 who was especially 
concerned with the effect of dimensionality on the 
probability that a walker starting at a given point 
eventually returns to that point. Some other types 
of problems which are of special interest involve the 
average time required by a walker to go from a given 
lattice point to another preassigned point for the 
first time and with the average number of distinct 
points occupied in a walk of a given number of steps. 
Results on these topics as well as the effect of a 
small number of lattice defects on random walks 
have been discussed in the first paper of this series.2 

That paper is concerned mainly with random walks 
which involve jumps to nearest-neighbor lattice 
points only. Many of the results are generalized here 

1 G. Polya, Math. Ann. 84, 149 (1921). 
2 E. W. Montroll, Proc. Symp. App!. Math. Am. Math. 

Soc. 16, 193 (1964). 

to be applicable to walks which involve steps to more 
distant neighbors. We also discuss the average num­
ber of points occupied k times in an n-step walk as 
well as the number of times a given point has been 
occupied in such a walk. The average number of 
points occupied in an n-step walk was first esti­
mated by Dvoretsky and Erdos,3 further analysis 
having been made by Vineyard4 and one of the 
authors.2 Repeated occupancy was first considered 
by Erdos and Taylor.s 

Green's function techniques and Tauberian theo­
rems are the main mathematical tools used in this 
paper. Although emphasis is placed on walks in 
which steps are taken at regular time intervals, the 
generalization to those in which the steps are taken 
at random times is developed in Sec. V. 

We also discuss the effect of traps of a given con-
3 A. Dvoretzky and E. Erdos, Proc. 2nd Berkeley Sympos. 

Math. Stat. and Prob., (University of California Press, 
Berkeley, 1951), p. 33. 

• G. H. Vineyard, J. Math. Phys. 4, 1191 (1963). 
6 P. Erdos and S. J. Taylor, Acta Math. Acad. Sci. Hung. 

11, 137 (1960). 
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centration on the probability of a walker on a one­
dimensional lattice returning to his starting point 
before being trapped. 

Since the first draft ofthis article was completed, 
a book by Spitzerfi has appeared which contains a 
discussion of some of the topics included here. 

I. LATTICE GREEN'S FUNCTIONS AND RANDOM­
WALK GENERATING FUNCTIONS 

We begin by studying discrete random walks on 
lattices with periodic boundary conditions (Le., 
toroidal lattices), and in particular will assume that 
there exists an integer N such that the lattice points 
s = (Sl' S2, ••• , SI;) satisfy 

(S1 + j1N, S2 + j2N, ... ,S" + jkN) = (SI' S2, ••• ,s,,) 

when the j's are integers. 
There are Nk distinct lattice points on our k­

dimensional lattice. Let P,,(s) be the probability 
that the random walker is at a point s after the nth 
step. In view of the periodic boundary conditions, 

P,,(SI + j1N, 82 + j2N, ... ,8" + j"N) = P,,(s), (1.1) 

when the j's are integers. The {P,,(s)} satisfy the 
recursion formula 

P,,+1(s) = L: pes - s')P,,(s'), (L2) 
s· 

if pes) represents the probability that any step results 
in a vector displacement s by a walker. We find the 
Fourier expansion of pes) 

A(2rr/N) = L: pes) exp (2rir-s/N), (1.3) 
s 

which we call the structure function of the walk, to 

Properties of random walks can be described 
effectively through the random-walk generating 
function . 

., 

pes, z) = L: z"p .. (s). (1.6) 
o 

We restrict ourselves now to the initial condition 

(1.7) 

which corresponds to walks which start from the 
origin, s = O. By multiplying (2) by z", summing 
over all n, and applying (7), one finds that pes, z) 
satisfies the Green's function equation 

pes, z) - z L: pcs - s')P(s', z) = os.o. (1.8) 
s· 

This equation can be solved for our generating 
function PCs, z) by considering the function 

U(Z, 27rf/N) = L: pes, z) exp (211ir-s/N). (1.9) 
s 

If we multiply (8) by exp (2ris'r/N), sum over s 
and employ (9) and (3) we find 

u(z,2rr/N) = {I - zA(27rf/N)}-1. (1.10) 

Since pes, z) is the Fourier inverse of u(z, 27rf/N} , 
we find 

P( ) = N-" L: exp (-211ir-sjN). 
s, z r 1 - zA(27rf/N) 

(1.11) 

In the case of an infinite lattice, N -t <Xl and 
.. 

1 J J exp (-is-a) dka 
pes, z) = (2r)" . . . 1 _ ZA(a) • (LI2) 

be of considerable importance. In particular From this it is clear that 

L: pes) = 1 and A(O) = 1 (1.4) 

when walkers are conserved; i.e., when walkers are 
neither created nor destroyed in the walk. The 
reader can easily verify that 

(Cl + C2 + ... + ck)/k 

for k-D simple cubic lattice 

A(a) = (C1C2 + C2Ca + cac1)j3 (1.5) 

for 3-D face-centered cubic lattice 

C1C2Ca, 
for 3-D body-centered cubic lattice, 

where 
Cj = cos t'J; and t'J j = 21r1";/N. (L5a) 

---
6 F. Spitzer, Principles oj Random Walks (D. Van Nostrand, 

Inc., Princeton, New Jersey, 1964). 

Also since we assume walkers to be conserved 

L:P,.(s) = 1, (LI4a) 
a 

and 
L: P(S, z) = (1 - Zfl. (1. 14b) 
• 

In all the analysis above we assume Izi $ 1. 
We will find it expedient to separate out the 

singular and nonsingular parts of P(s, z) by writing 

P(s, z) = (1 - z)N- k + ~(s, z), (1.15) 

where 

( ) = N-k ", exp (211ir-s/N) 
~ s, z 7-' 1 - zA(27rr/N) , (I.16) 
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in which the prime indicates that the term with 
rl = r2 = ... = rio = ° is to be omitted. In general, 
when the limit N -l> eo is taken, the sum can be re­
placed by an integral. Although the resulting integral 
may be a singular function of z the singularity is 
weaker than (1 - Z)-l as we show later. 

We will also be interested in the properties of the 
first passage time, and for this purpose we define 
F,,(s) to be the probability that a random walker 
reaches the point s for the first time at step n. The 
generating function of the F,,(s) will be denoted 
by F(s, z): 

'" 
F(s, z) = 1: F,,(s)z". (1.17) 

n-l 

It is possible to relate the F,.(s) to the P,,(s) since, 
if the random walker is at step n he must first have 
reached there at some step i and then returned to 
sinn - i steps. Taking account of the initial condi­
tion of Eq. (1.3), we find .. 

P,,(s) = 0",00,,0 + 1: Fj(s)P,,_;(O) 
;-1 

The generating functions therefore satisfy 

F(s, z) = [pes, z) - hs,o]/P(O, z). (1.18) 

The probability that the walker reaches point s at 
some time is just F(s, 1). For N < eo the probability 
of reaching any point on the lattice is one, inde­
pendent of the dimension. When N = eo the 
probability of a return to the origin is 1 - [F(O, lW l 

In one and two dimensions F(O, 1) = eo and the 
walker returns to the origin with probability one. 
In higher dimensions the return to the origin occurs 
with probability less than one. The same results are 
true for the first passage to any point s. 

Another function that will be useful later is 
F~r)(s), the probability that the random walker 
reaches s for the rth time at step n. This function 
satisfies the recurrence formula 

" F!r)(s) = 1: F~':..~l)(s)Fi(O), (1.19) 
i-I 

and its generating function F(r) (s, z) is therefore 
given by 

'" 
F(r)(s, z) '== [F(O, z)y-1F(s, z) = 1: F!r)(s)z". (1.20) 

.. -1 

II. STATISTICS OF FIRST-PASSAGE TIME 

The first results to be given will be those related to 
first-passage times. Let (n"(s» be the jth moment of 
the first-passage time to reach point s. In terms of 
F(s, z), (ni (s» can be written 

(ni(s» = (z ojozYF(s, Z») •• l' (ILl) 

In particular, if we substitute the representation of 
Eq. (11.15) for pes, z) into (II. IS) we find, for the 
first two moments 

(n(s» = {Nk [<,0(0 , 1) - <,O(s, I)J, s F 0, (IL2a) 

N k
, s = 0, (1I.2b) 

(n2(s» = [2N\?(0, 1) + 1] (n(s» 

+' 2Nk [o<,O(0, z) _ o<,O(S,il] if s F 0, (11.3a) 
oz oz 0-1 

(n2 (0» = 2N2It<,O(0, 1) + N k
• (II.3b) 

Notice that the expected number of steps required to 
return to the origin is N\ the total number of lattice 
points, independently of the structure of the lattice. 
The second moment of the expected number of 
steps required to return to the origin for the first 
time does depend on lattice structure as is indicated 
by the function <,0(0, 1). Moments of the number of 
steps to reach other points on the lattice for the first 
time all depend on the structure. 

So far we have given formal results valid for any 
k-dimensional periodic lattice. In the next few 
paragraphs we shall illustrate the general theory by 
evaluating some of the relevant functions for par­
ticular lattices. In our evaluation we will need some 
analytic properties of the functions h("') and <,O(r, z) 
which appear in many of the formulas derived above. 
We shall be interested only in symmetric random 
walks, hence the expansion of h("') in a neighborhood 
of the origin is 

X(".) = 1 ..:. 4 t l1~tJ~ + 0(tJ4
), (11.4) 

where 
(IL5) 

We will make use of <,O(s, z) for an infinite lattice in 
the limit z = r. The expression for <,O(s, z) when 
N= eo is 

1 
<,O(s, z) = (2'lI-/ 

.. 
X J '" f exp (ia-·s) dka- = P( ) 

, 1 _ ZA(a-) s, Z • (II.6) 

The function <,O(s, 1) is singular in one and two dimen­
sions. We can see this by considering the contribu­
tion to <,O(s, 1) from a neighborhood of the origin 
a- = 0, 

(II.7) 
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If the integrand is transformed to polar coordinates, 
there arise contributions of the form 

.•. ~dr f f 
<-1 

l' , (II.8) 

which diverges in one and two dimensions, but re­
mains finite in higher dimensions. We will be inter­
ested in the behavior of 4O(S, z) for s = 0 and s = 
(si + ., . + 8%)1 large but not large enough to violate 
the condition 8 « N k

• It will be demonstrated that 
the properties of (n(s»/Nk can be obtained fairly 
simply for large distances from the origin. 

Let us begin by decomposing the integral defining 
4O(S, z) into two parts: 

1 f" f 1i)'S{ I + (271'Y • •• e 1 - z}..(t'J) 

- 1 2: 2 2)} d"ft 1 - z + 2Z(U1t'J1 + ... + Ukt'Jk 

= epl(S, z) + ep2(S, z). (II.9) 

The singularity in one and two dimensions at z = 1 
comes from the function epl(S, z) since the integral 

where the interchange of orders of integration can be 
justified in detail. Thus epiCS, z) can be expressed as a 
Laplace transform 

(II.12) 

where F(z, t) is the product of integrals in Eq. (II.II). 
Since each of the integral factors of F(z, t) is analytic 
in z at z = 1, we may expand F(z, t) in a Taylor 
series around z = 1, 

F(z, t) = F(I, t) + (z - I)[iW/iiz]._l + .. , . (H.13) 

Since we are interested in the behavior of epl (8, z) at 
z = 1 we can invoke an Abelian theorem for Laplace 
transforms7 which states in the present context that 
the behavior of \0(8, z) at z = 1 is determined by the 
behavior of F(z, t) at t = co. 

To determine this behavior we note that as t -+ co 

the integrand of each of the integrals in epl(S, z) 
is peaked sharply at the origin with negligible contri­
bution coming from values of t'J; greater than 
2/u;tizi. Hence the ranges of integration on the t'J 
integrals (-7r, 7r) can, as t -+ co be replaced by 
( - <Xl, <Xl) so that 

k 

F(z, t) '" II (2u~7rtzr~ exp (-8U2ztu~) 
i-1 

for ep2(S, 1) has the form and 

f ... J r k
-

I dr 

at the origin of (J space. In higher dimensions both 
CPl (s, z) and CP2(S, z) approach zero as s -+ <Xl, but 

(I 1. 10) 

This limit can be established by examining the be­
havior of the integrands in the neighborhood of 
ft = 0, which gives the principal contribution in the 
range of large s. A detailed justification is given in 
Appendix A. We therefore see that the significant 
analytic properties of ep(s, z) are contained in epl(S, z) 
for large s. 

We shall recast the form of this function as a 
Laplace transform and begin by using the identity 

u-I = 1'" e-ut dt 

to rewrite it as 

epl(S, z) = Leo e-O- o
)< dt 

X IT {21 1" exp (it'J;s; - !ztu~t'J;) dt'JI }, 
• -1 7r_ .. 

(II.ll) 

F(I, t) ""' [Ul .•. O'k(211'tt/2r l exp (-}..2/2l), (II.14a) 

where 
k 

}..2 = .E (S;/fti?' 
i-I 

In one dimension we find 

( ) _1_ fa> -O-.H-<,·/Z'''·)t-} dt 
epl 8, Z ,"V U(27r)l 10 e 

2
1s' (s i) = 7rtui (I _ z)i K t -; [2(1 - z)] 

exp {-(8/u)[2(1 - Z)J1} 
= u[2{1 - Z)]I 

(IL14b) 

(II.15) 

where K 1I2 (X) is a Bessel function of the third kind 
of imaginary argument. The two-dimensional form 
\01(8, z) for}.. ,.:: 0 is 

epiCS, z) "",,-1-1'" r 1 exp {-(1 - z)t - A,2j2t} dt 
211'U I0"2 0 

(II.I6) 

7 D. V. Widder, The Laplace Transform (Princeton Uni­
versity Press, Princeton, New Jersey, 1941) . 
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When A = ° we may use an Abelian theorem for to find 
Laplace transforms7 to show that it follows from the 
asymptotic form F(I, t) "" (211"0"10"2t)-1 that ~~~ (n(s»/N = cp(O, 1) - cp(s, 1) 

(II.17) 

for z -+ r. In three dimensions and higher CPl(O, 1) 
is defined by a convergent integral and must be 
calculated numerically. For large A2 an asymptotic 
expression for CPl (s, 1) is 

( 1) 1 10> -X'!2't-kI2 dt CPl S, rv (2 )k/2 e 11" 0"1'" O"k 0 

= A2- k r(!k - 1)/20"1 ... O"k1l"k/2. (II.18a) 

The 3-D expression for pes, z) as z -+ 1 is 

pes, z),...., (211"AO"l0"20"a)-1 exp { - A[2(1 - z)]l}. (11.18b) 

Let us now consider some results for specific 
lattices. The simplest case is that of a one-dimen­
sionallattice with jumps to nearest neighbors with 
probability!. For this case we can calculate an 
explicit expression for2 P(s, z): 

P(s z) - .1 E exp (2mrs/N) 
, - N r-O 1 - z cos (211"T/N) 

(1 - z2r!(U" + UN
-") 

= 
(1 - UN) 

(II.I9a) 

where 

(11.19b) 

It is known that the mean recurrence time for 
return to the origin is infinite for an infinite lattice, 
even though the return probability8 is 1. Likewise 
the expected time to reach any point is infinite al­
though the probability of reaching any point is 1. 
This difficulty is avoided in the case of a finite lattice. 
Here, in contrast to the Polya case, return to the 
origin or to any lattice point occurs with probability 
one in any number of dimensions. We shall calculate 
the expected time to reach any point for the first 
time for nearest-neighbor jumps, and then present 
the generalization for different one-dimensional 
random walks, in the limit of large N. For the lattice 
with jumps to nearest neighbors only, we find2 by an 
exact calculation starting from Eqs. (II.2a) and 
(11.19) 

(n(s» = s(N - s). (II.20) 

r-.J lim [CP1(O, z) - CP1(S, z)] = S/0"2. (II.2I) 
.->1 

In the two-dimensional case, since 

KoU\[2(I - z)]!} rv -! log (1 - z) - log A + 0(1) 

for large A, we have the expression 

lim (n(s»/N2 
rv log A. 

N-HD 7rCT10"2 
(II.22) 

For the symmetric random walk on a simple square 
lattice with jumps to nearest neighbors, 0"1 = 0"2 = 2-; 
and the mean passage time is 

lim (n(s)) = 2 log s. 
N->o> N 11" 

(II.23) 

The three-dimensional first-passage time is given 
by 

lim (n(~) 
N->o> N 

It is interesting to note that, in one and two dimen­
sions, the first term in the asymptotic expansion 
for the mean first-passage time depends only on A 
and the 0" i and not on any further detailed description 
of the lattice. Furthermore, (n(s»/Nk is an increasing 
function of A for large A in one and two dimensions. 
In three and higher dimensions the mean first­
passage time depends in a detailed way on the 
lattice [through cp(O, 1)] and to a first approximation 
is a constant, independent of A. 

Calculation of the variances of the first passage 
times is considerably more difficult because, at the 
very least, the expression for the variance contains 
cp(O, 1). For the one-dimensional random walk with 
jump probabilities of ! to either nearest neighbor, 
the detailed expansion of P(s, z) around z = 1 is 
from Eq. (11.19) 

P(s, z) = 1 - s(N - s)(1 - z) + is(N - s) 

X (N2 + sN - S2 - 5)(1 - zY + (II.25) 

From this expression we derive 

= !s(N - s)[N2 - 2s(N - s) - 2], s ~ 0. (II.26) 
To treat the case of the general one-dimensional 

walk for which N» s, we use Eqs. (II.2a) and (II.I5) For s = ° we have 

8 W. Feller, An Introduction to Probability Theory and 
its Applications (John Wiley & Sons, Inc., New York, 1951). 

F(O, Z) = 1 - [P(O, z)r 1 = 1 - N(I - z) 

+ iN(N2 
- 1)(1 - z? - ... , (11.27) 
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from which it follows thae for the cubic lattices: 

u2 (0) = !N(N - 1)(N - 2). 

It is possible to derive an asymptotic value for 
u

2 (0) for any I-D transition probabilities by noticing 
that in the limit N = <Xl, the principal contributions 
ill 

~(O, 1) = ~ % {I _ x(~j)}-I 
2 1!(N-I) J { (211"i)}-1 

=- E I-A-
N i-I N 

+ 2~ [1 + (-lt J{1 - Ae7l'[!(N ~1)] + 271')r
1 

come from small j. We therefore expand X(271'jjN) 
according to Eq. (II.4) and find 

N 1!(N-I) J '-2 

~(O, 1) "" 22 E 3 . 71' UI i-I 
(II.29) 

In the limit of large N the series can be replaced by 
its sum to infinity *71'2, and the asymptotic expression 
for the variance becomes 

(II.30) 

in agreement with the special result given in Eq. 
(11.28). It is also possible to derive an expression for 
u2(s) for s « N by this technique. A calculation 
similar to the preceding serves to show that 

Cl~(O, 1) _ Cl~(s, 1) = Ns: . (II.31) 
Clz Clz 6uI ' 

hence the principal contribution to u2 (s) comes from 
the first term in the expression for (n2 (s». Using 
the expression for ~(O, 1) given in Eq. (11.29) we 
find 

-r 

It is of incidental interest that the expression for 
the variance 

(II.35) 

shows that, for k ;::: 3, 

~(O, 1) ;::: t, (II.36) 

a result which seems otherwise difficult to prove. 

Ill. NUMBER OF POINTS VISITED T TIMES IN AN 
n-STEP WALK 

We now turn to the statistics of the number of 
distinct lattice points visited during an n-step walk. 
We will be concerned mainly with the large n case, 
although some results will also be given for any 
integer n. 

Let S" be the average number of lattice points 
visited in an n-step walk. Then 

(II.32) S" = 1 + L' {FI(s) + F2(s) + ... + F,,(s»), (ULl) 

It is shown in Appendix B that the asymptotic 
form for ~(O, 1) in the 2-D case as N ~ <Xl is 

~(O, 1) "" (7I'Ulu2tl log N. (U.33) 

Hence in 2D the variance in the return time to the 
origin is 

(II.34) 

The sum defining ~(O, 1) converges in three dimen­
sions and greater. As N ~ <Xl, ~(O, 1) has the integral 
form (11.6). These integrals have been calculated 
by Watson9 for cubic lattices. From the numerical 
values one obtains the following estimates of u2 (0) 

9 G. N. Watson, Quar. J. Math. Oxford, Ser. 10, 266 
(1939). 

• 
where the primed summation proceeds over all 
lattice points except the origin. The integer 1 repre­
sents the fact that the walker was originally at the 
origin. As before F;(s) is the probability that the 
walker arrives at s for the first time after the jth 
step. Hence the summand of (IIL1) represents the 
probability that the point s has been occupied at 
least once in the first n steps. 

It is convenient to define a quantity Ak by 

k = 1,2, ...• (UL2) 

Since So = 1 and SI = 2 we find Al = 1. Then 
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Hence the generating flllction for 1:1" is 
.. 

l:1(z) = :E z" 1:1 .. 
1 .. .. 

= -:E z"F,,(O) + :E :E z"F,,(s), 
1 8 n-1 

so that 

l:1(z) = -F(O, z) + :E F(s, z). 
• 

However from Eq. (LIS) 

and 

F( ) = PCs, z) - lis,o 
s, z P(O, z) 

l:1(z) = -1 + E P(s,z) . 
s P(O, z) 

Then Eq. (L14b) implies 

l:1(z) = -1 + {(I - z)P(O, z)r l
• 

(IlIA) 

(IlI.5) 

(II I. 6) 

(III.7) 

(I1L8) 

The generating flllction S(z) can be obtained 
immediately from this expression since 

So = 1, 

SI = 1 + 1:111 

S" = 1 + 1:11 + 1:12 + ... + 1:1.. etc., 

we find 

S(z) = _1_+~+ z21:12 + 
1-z 1-z l-z 

= _1_ + l:1(z). 
1-z l-z 

Hence from (IlI.S) 

S(z) = HI - Z)2P(0, z)} -I, 

(IIL9) 

(IIL10) 

The asymptotic properties of S" as n ---+ 00 can be 
inferred from the analytic behavior of l:1(z) as z ---+ 1 
by employing the following Tauberian theorem1o

: 

Let A(y) = :E an exp (-ny) be convergent for 
all y > 0 and let an > 0 for all n. If as y -t 0 

(III.lla) 

where (i) ~(x) = x"L(x) is a positive increasing 
flllction of x for x greater than some xo, and which 
increases monotonically to infinity for x sufficiently 
large; (ii) q is ~O; and (iii) L(cx) '" L(x) as x -t 00; 

then as n -t 00 

al + a2 + .,. + a .. '" ~(n)/r(q + 1). (III.llb) 

In our problem we interpret al + ". + a .. as 
1:11 + ,. , + 1:1" and A(y) as l:1(e-Y

). 

10 G. H. Hardy, Divergent Series (Oxford University Press, 
New York, 1949). 

As z ---+ 1 the asymptotic behavior of P(O, z) in 
one, two, and three dimensions is as follows2

; 

1D P(O, z) = (1 - z2rt , (III.12a) 

2D P(O, z) ,...., -7r -1 log (1 - z), (1II.12b) 

3D P(O, z) ,...... P(O, 1) 

+ a(1 - z)t + ... , (IIl.12c) 

where a is a constant which depends on the lattice. 
Then, if we let z = exp (-y) and let y -t 0, 

1D l:1(z) ,...., (2/y)i, (IILI3a) 

2D l:1(z) '" (7r/y)[l/log (l/y)], (III. 13b) 

3D l:1(z) ,...... (yP(O, 1)]-1. (IIL13c) 

The Tauberian theorem given above applies di­
rectly to our problem2 if we choose 

1D q =!, L(x) = 2i , 

2D q = 1, L(x) = 7r/log x, 

3D q = 1, L(x) = l/P(O, 1). 

(IlL 14a) 

(III.14b) 

(IIL14c) 

We therefore find for the number of distinct lattice 
points visited after n steps 

ID S",...... (Sn/7r)i, 

2D S,,""" 1m/log n, 

3D S .. ,...., n/P(O, 1). 

(III.15a) 

(III.15b) 

(III. 15c) 

These results have been derived by Erdos and 
Dvoretsky3 and by Vineyard' by somewhat dif­
ferent methods. The values of P(O, 1) are 1.5164 for a 
simple cubic lattice, 1.3445 for a face-centered and 
1.3932 for a body-centered cubic lattice.2.4 

It is interesting to note that the 2-D S,,/7r has the 
same asymptotic behavior as the number of primes 
less than n. Perhaps one can find some deep connec­
tion between random walks on square lattices and the 
distribution of primes. 

We have shown in Appendix C that the generating 
function for the average number of lattice points 
visited at least r times, s~r), is 

{
I }r-l 1 

s<r)(z) = 1 - P(O, z) (1 _ Z)2PCO, z) , (III.16) 

while that of 

IS 

{
I }r-l 1 

1:1 <r)(z) = 1 - P(O, z) (1 - z)P(O, z) , 

r ~ 2. (III.17) 

The average number of lattice points visited exactly 
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r times after n steps, v~r) is given by 

(II I. 18) 

Its generating function is 
m 

v(r)(z) = L: v~r)zr 
o 

1 { 1 }r-l 
= (1 - zY[P(O, Z)]2 1 - P(O, z) . (III.I9) 

By applying the above Tauberian theorem to 
Eq. (111.17) we can generalize (111.15c) to find s~r), 
the average number of points occupied at least r 
times in a walk of n steps on a three-dimensional 
lattice. If we set z = e-Y and let y ~ 0 we find 

(r) _y { 1 }r-l 1 
~ (e ) "" 1 - P(O, 1) P(O, l)y , (II 1.20) 

so that in the notation of the Tauberian theorem 
(]' = 1 and 

1 { 1 }r-l 
L(x) = P(O, 1) 1 - P(O, 1) 

= constant. (I11.21) 
Hence, since for r > 1 

s~r) = ~:r) + ~~r) + ... + ~~r), 
Eq. (111.16) implies that as n ~ co 

(r) n { 1 }r-l 
S" "" P(O, 1) 1 - P(O, 1) . (I11.22) 

Noting that the quantity f = 1 - [P(O, l)rl is 
the probability that a random walker who starts 
from the origin ever returns to the origin, we can 
write 

s~r) "" n(1 - f)r- 1
• (111.23) 

The values of f for the three cubic lattices are sc 
0.34056, bcc 0.28223, and fcc 0.25632. 

As n ~ co, the average number of points occupied 
on a 3-D lattice exactly r times in an n step walk is 

(III.24) 

If one wishes to find correction terms to the 
asymptotic formulas (111.15) for Sn, the number of 
points visited at least once in an n step walk, he 
must proceed in a more systematic manner. In the 
3-D case it is shown in Appendix D that 

P(O, z) = U o - u 1(1 - z)! + u,(1 - z) 

- ua(1 - z)! + .... (111.25) 

The numbers Uo for the various cubic lattices are 
given in Eq. (D.3) of that appendix.9 It was also 
shown that 

{

(3l ll-)(t)1 = 1.1695454 sc, 

Ul = I/211l' = 0.2250791 bcc, 

31/41l' = 0.4134967 fcc. 

(II I. 26a) 

(I11.26b) 

(I11.26c) 

The values of U2 and Ua have not been calculated for 
the bcc and fcc; however, for the sc lattice, 11 

U2 = 1.384761, 

9 (3)! 
Ua = 41l'"2 = 0.877159. 

(I11.27a) 

(11I.27b) 

Equation (111.25) can be substituted into the 
generating function S(z) [see Eq. (111.10)] to obtain 

S(z) = [uo(1 - z)2rl 

+ (ul/u~)(1 - z)-l + [(u~ - u2uo)/u~](1 - zt 1 

+ [(u~ - 2UOU 1U2 + uau~)/u~](1 - z)-t + .... 
(I11.28) 

Now the coefficient of zn in the series expansion of 
(1 - z)m is 

for m = -2: (n + 1), (II I. 29a) 

for m = _11.. (2n + 1)!j22nn! n!, (II I. 29b) 2 • 

for m = -1: 1, (11I.29c) 

for m = _.1. (2n - I)!j22n
-

1n! (n - I)!. (111.29d) 2 • 

One can use Stirling's expansion for large n to find 

(2n + I)! "" 2(?:!c)' 
22nn! n! 1l' 

X [1 +..! - ~ + ... J (111.30a) 8n 128n ' 

(2n - I)! 1 
22n In! (n - I)! "" (n1l')1 

X [1 - ~ + ~ - ... J. (111.30b) 
8n 128n 

Then 

+ (3UIU~ + 4u~ - 8UOU1U2 

+ 4U3U~)/[4u~(1l'n)'] + O(I/n). (111.31) 

In the case of the bcc lattice 

41l'3n 161l'5 (2n) 1 

S" "" [rmt + [rm]8 -;- + 0(1) 

= 0.71777001n + O.130846ni + 0(1). (111.32) 

11 A. Maradudin, E. Montroll, G. Weiss, R. Herman, and 
H. Milnes, "Green's Functions for Monatomic Simple Cubic 
Lattices," Acad. Roy. Belg. C1. Sci. Mem. CoIl. in 4° (2) 14 
(1960) No.7. 
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In the case of the fcc lattice 

211/3n7l"4 219/371"7 (n )1/2 

~~ '" 9{r(!)}6 + 9{raW2 
371" + 0(1) 

= 0.74368182n + 0.258048nl/2 + 0(1), (III.33) 

while with the extra information available for the sc 
lattice one finds in that case 

S,. '" 0.65946267n + O.573921nl/2 

+ 0.449530 + OA0732n- I
/

2 + ... (III.34) 

A similar expression can be obtained for the 
number of points occupied at least once after n steps 
on a \1-D lattice walk in which the walker steps 
only to a nearest-neighbor point on each step (steps 
in either direction being equally probable). Then 
from (III.lO) 

(1 - z2)1 [2 - (1 - z)]l 
S(z) = (1 _ Z)2 = (1 _ z)i 

= 21{(1 - z)-J - HI - z)-l 

- -g-\-(1 - z)l - Th(1 - z)! - ... }, 

so that 

(III.35) 

21(2n + 1)1 { 1 
S,. '" 22nn! n! 1 - 4(2n + 1) 

- 32(4n; - 1) - ... }. (III.36) 

If n is chosen to be as small as 4 this yields 3.347 
as compared with the exact value 3.375 given in 
Table II. By using Stirling's approximation [see 
Eq. (III.30)] for the factorials we find the somewhat 
simplified expression 

(Sn)l{ 1 3 } S", - 1+---2 + .... 
.. 71" 4n 64n (III.37) 

The generating function for the number of points 
which are occupied exactly once in an n step 1-D 

TABLE I. Values of pes, 1) for a simple cubic lattice when 
8 2 = 812 + 822 + 832 < 15. These numbers correspond to the 
symmetrical case with P(8182B" 1) = P(82818" 1) = ... , etc. 
This function is the lattice Green's function defined by (II.6) 
and (1.5) when z = 1. 

(SI, 82, 8,) P(s, 1) (81, 82, 8.) pes, 1) 

001 0.516387 023 0.132451 
002 0.257336 111 0.261470 
003 0.165271 112 0.191792 
011 0.331149 113 0.144196 
012 0.215590 122 0.156953 
013 0.153139 123 0.126946 
022 0.168331 222 0.135908 

TABLE II. S,.(r) = Average number of points occupied 
at least r times in a 1-D walk of n steps. 

n/r 1 2 2 

0 1 0 0 
1 2 0 0 
2 5/2 1/2 0 
3 3 1 0 
4 27/8 11/8 1/4 
5 15/4 7/4 1/2 
6 65/16 33/16 3/4 
7 35/8 19/8 1 

walk is, from (IIU9) and (IIU2a) 

V(1)(z) = [(1 - z)P(z, 0)r2 

4 5 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

1/8 0 
1/4 0 

= (1 - z2)/(1 - Z)2 = (1 + z)/(1 - z) 

= 1 + 2z + 2i + 2l + ... . (III.3S) 

Hence 

V~l) = 1 and V~1) = 2 for n > 1. (III.39) 

The asymptotic expression for V~l) for large n on a 
2-D square lattice can be obtained by finding the 
generating function for 

D(l)(z) = -1 + (1 - ztl[p(Z, O)Y 
(IIIAO) 

(here D~l) is analogous to d .. in the calculation of 
StI). By employing (III.40) and our Tauberian 
theorem we find 

(III.41) 

to be the asymptotic number of points occupied 
exactly once in the 2-D case. The result has also 
been derived by Erdos and Taylor5 by a different 
method. 

The 1-D generating function for S~2), the number 
of points occupied at least twice in an n-step walk is 

S(2)(Z) == {I _ (1 _ Z2)t} (1 - z2)1 
(1 - Z)2 

= S(l)(z) _ (1 + z). 
1-z 

Hence when n ~ 2 

(III.42a) 

(III.42b) 

which can be verified in Table II. Similarly, 

S(3)(z) 

= [1 - 2(1 - Z2)t + (1 - z2)](1 - z2)t/(1 _ Z)2 

= (2 - Z2)S(I)(Z) - 2(1 + z)/(1 - z) 

Hence 

S~3) = 2S~1) - S~~2 - 4 if n ~ 4. (III.42c) 
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TABLE III. V,,(r) = Average number of points occupied 
exactly r times in a I-D walk of n steps. 

n/r 1 2 3 4 5 

0 1 0 0 0 0 
1 2 0 0 0 0 
2 2 1/2 0 0 0 
3 2 1 0 0 0 
4 2 9/8 1/4 0 0 
5 2 5/4 1/2 0 0 
6 2 21/16 5/8 1/8 0 
7 2 11/8 3/4 1/4 0 

Similarly 

S~4) = 4S~I) - 3S~~)2 - 6 if n ~ 6, (III.42d) 

etc. 

This scheme can be continued further and when these 
formulas are combined with (111.36) and (111.37), 
very accurate asymptotic expansions can be found for 
s~r) for I-D walks, r « n. 

IV. THE NUMBER OF VISITS TO A GIVEN LATTICE 
POINT DURING A WALK OF n STEPS 

The probability that a point s is visited at least r 
times in an n-step walk is 

" L: Fir) (8) if s rf 0, 
i-I 

" L: Fir-I) (0) if 8 = 0, 
i=1 

so that the probability that s is visited exactly r 
times is 

::t [Fi')(s) - Fj"+I)(s)], 
;=1 

/3~r) (s) = 
if s rf 0, (IV.I) 

::t [Fir-I)(O) - FY)(O)], 
i-I 

if s = O. 

The formulas for /3~r) (0) are distinctive because the 
walker starts at the origin. 

The generating function for /3(r)(s, z), 

n 

/3(r) (s, z) == L: z"/3~r) , 
1 

is easily seen from (1.20) to be 

(1 - z)-IF(s, z)[1 - F(O, z)] 

X [F(O, z)r-t, s rf 0, 
p(r) (s, z) = 

(1 - z)[F(O, z)r l 

X [1 - F(O,z)], s = o. 

(IV.2) 

(IV.3) 

The mean number of times the point s has been 
visited after n steps is 

M,,(s) = L: r/3!r) (s). 

This has the generating function 
ro ro 

M(s, z) = L: I>/3!r)(s)z" 
r-l n-l 

ro 

= L: r/3(r,(s, z) 

F(s, z) 
= (1 - z)[1 _ F(O, z)] if s rf 0 

= (1 - zr1p(s, z). 

If s = 0, 

M(O, z) = {(I - z)[1 - F(O, Z)]}-I 

= (1 - Z)-Ip(O, z). 

(IVA) 

(IV.5) 

(IV.6) 

Hence (IV.5) is valid for all s including s = 0. 
The asymptotic form for M,,(O) for 3-D lattices 

can be obtained by using the expression for P(O, z) 
given in Appendix F. There it is shown that 

P(O, z) roo.J Uo - [2(1 - z)]! /7rUIU2Ua + .. " (IV.7) 

where the U o and u's are defined generally and evalu­
ated for walks on cubic lattices where only steps to 
nearest-neighbor points (all with equal probability) 
are taken. By combining Eqs. (IV.6), (IV.7), and 
(111.29) we obtain 

M,,(O) roo.J U o - (2/~); /7rUIU2U3 + O(1/n). (IV.8) 

The numerical results are 

l
1.51639 - 1.31969n-; + ... sc, 

M,,(O) roo.J 1.39320 - 0.25397n- f + ... fcc, (IV.9) 

1.34466 - 0.46658n-! + . .. bcc. 

As n ~ co 

M,,(s) ~ pes, 1). (IV. 10) 

These functions have been tabulated for ll sc lattices 
when 8

2 < 25. Some values are given in Table I. 
When s is large and z ~ 1 we have from (1.18b) 

[where)..2 = L: (8;/U;)2] 

P( ) exp 1-)..[2(1 - z)l]} 
s, z "'" AUIU2Ua(211'? 

Hence, from (IV.5), (IV.7), and (111.29), when 8 
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and n are both large, but still with s «ni, 

(IV.12) 

Employing the u values given in Appendix D for 
the walks involving only steps to nearest-neighbor 
lattice points on cubic lattices we find 

4~1r2 [ 1 - s(!Y + ... ] sc 

transforms are 

(V.4) 

where 

t/t*(u) = L" e-U!t/t(t) dt. (V.5) 

In terms of the F,,(s) defined in Sec. 1, F(s, t) is 
given by 

'" 
F(s, t) = L: F,,(s)t/t .. (t) (V.6) 

.. -0 

M .. (s) "" 4!1r2 [1 - s(;Y + ... ] bcc (IV.13) and its Laplace transform is 

3 [ ( 3 )! ] F*(s, u) = ro'" F(s, t)e-U ! dt 
8s1r2 1 - S 1m +. .. fcc. In 

A word of caution should be given concerning these 
results. One would expect that M,,(s) should appear 
with some ordering with respect to nearest neighbors. 
However the bcc results are not between the sc and 
fcc. This is because all lattices were obtained by 
restricting walks on a fundamental sc lattice. If the 
unit cells of each of the lattices were made the same 
size and s reexpressed as a length the results would 
fall properly in order. 

V. LATTICE WALKS FOR CONTINUOUS TIME 
VARIABLE 

The preceding results can be used as a basis for 
the analysis of continuous time random walks on 
discrete lattices. In this theory we shall be interested 
in functions like P(s, t) and F(s, t) (the probability 
of being at s at time t) and the probability density 
for reaching s for the first time at time t, respectively. 
We shall assume that jumps are made at random 
times t1, t2 , ta, ••• where the random variables 

Tn = t .. - t"~l' '" (V.l) 

have a common density t/t(t). It will be convenient to 
define a further class of probability densities {t/tn(t)} 
by 

t/to(t) = o(t) , 

t/t .. (t) = f t/t(T)t/t .. -1(t - T) dT, 

n = 1,2,3, '" 

(V.2) 

(V.3) 

'" 
= L: F"(s)[t/t*(u)],, 

.. -0 

= F[s, t/t*(u)], (V.7) 

where F(s, z) is the generating function of Eq. (I.17). 
The function Pes, t) is almost as simply related 

to the generating function pes, z). Let Q(s, t) be the 
probability density for the random walk to reach s at 
time t (not necessarily for the first time) and let 

'IJI(t) = probability that walker remains fixed in 
time interval (0, t) 

= 1 - { t/t(x) dx = f'" t/t(x) dx. (V.8) 

Then 

pes, t) = f Q(s, T)'IJI(t - T) dT, (V.9) 

or, in terms of Laplace transforms, 

P*(s, u) = Q*(s, u)[1 - t/t*(u)]/u. (V.lO) 

But Q(s, t) is given by 

'" 
Q(s, t) = L: p .. (s)t/t .. (t) (V. 11) 

.. -0 

or 

'" 
Q*(s, u) = L: p .. (s)[t/t*(u)]" 

= pes, t/t*(u)] , (V. 12) 

so that only the generating functions already dis­
cussed need be calculated. 

These are the probability densities for the occurrence Moments for various quantities of interest are 
of the nth step at time t. The most significant easily derived from the formulas above. For example 
property of the t/tn(t) is the fact that their Laplace the first moment and variance of the first-passage 
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time to s are 

1 = aF[S,lf*(U)]] = (n(s»1', 
au u-o+ 

(V.13a) 

f - 12 = [(n2(s» - (n(s»2]1'2 

+ (n(s»[T2 - 1'2], (V.13b) 

where Tn is the nth moment of the time between 
steps and (n(s» and (n2 (s» are given by (11.2) and 
(11.3). 

Continuous analogues of other discrete results 
are obtained in the same manner. For example, the 
probability density for the random walker to reach s 
for the rth time is 

a> 
F<r)(s, t) = L F~rl(S)lf1O(t) (V.14a) 

10-0 

or 

F<rl*(S, u) = F(rl[s, If*(u)] , (V.14b) 

where F<rl (s, z) is given by (1.20). 
We can also consider the statistics of the number 

of distinct steps visited after a time t. Let S (t) be the 
average number of lattice points visited at least 
once in time t. Then 

VI. EFFECT OF TRAPS ON PROBABILITY OF 
RETURN TO THE ORIGIN ON A I-D LATTICE 

Another type of random walk problem is concerned 
with effect of traps on the probability of a walker 
eventually returning to the origin. We shall limit 
ourselves here to a discussion of the 1-D case while 
an analysis of the 2-D and 3-D problems, which are 
much more difficult, will be given elsewhere. 

It has been shown2 that in the presence of one trap 
at II and another at l2 with l2 < 0 < II the probability 
that a walker initially at the origin is trapped before 
return to the origin is 

(ll - l2)/2Z1 (-l2) = HZ~I - Z;l). 

This probability is not changed by the addition of 
any number of new traps which are not located in the 
intervall2 < 0 < ll' 

Let e be the concentration of independently located 
traps. Then, if it is known that the origin is not a 
trap, the probability that a trap exists at II and at l2 
and none in between is 

e(l - ct l
.-

1(1 - c/·-1e. 

Hence the probability of our walker being trapped 
before returning to the origin is 

a> 
SU) = L t F(rl(s, or) dT. • 10 

(V.15a) L L e2(1 - e)I.-I.-2m(l~1 - Z;l) 
ll=1 l ..... -l 

Hence the Laplace transform of Set) is 

If*(u) 
£{S(t)} = u[l - If*(u)]P(O, If*(u)) (V. 15b) = - [el(l - e)] log e. 

To find the large t behavior of Set) it is necessary to 
use the expansion 

If*(u) = 1 - u1' + o(u) (V.16) 

in Eq. (V.5), together with the asymptotic forms of 
Eq. (111.12) for the behavior of P(O, z) in the neigh­
bor hood of z = 1. In this way, we find that in one 
dimension 

(V.17) 

in the neighborhood of u = O. But, by a Tauberian 
theorem7 this implies that 

Set) = (8t/rr1')! + 0(1). (V.18) 

In three dimensions the result is 

Set) = (tl1')IP(O, 1) + 0(1). (V.19) 

The results are in agreement with (II1.15a) and 
(III.15b) since the number of steps n is just tiT in 
the case of steps at regular time intervals. 

Then as a function of concentration of traps, the 
probability of a walker returning to the origin before 
being trapped is 

F(e) = 1 + [e/(1 - c)] log e. 

APPENDIX A. ASYMPTOTIC FORM OF 
tp(s, z) AS s ~ (X) 

The Green's function 
.. 

I J J expis·{)-d
k
{)-

cp(s, z) = (211/ . . . I - ZA(1't) 

can be expressed as 

() 1 fa> -a d J J is·1t 
1,0 s, Z = (27rt 0 ea'" e 

(A.I) 

X eazX(ltl dk{)-. (A.2) 

When 8 is very large the main contribution to the {)­
integration comes from small values of Ittl. In this 
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range in a symmetrical random walk (see I.4) where 

}..(It) = 1 - ! L <T;t'J~ + 1 L l'-ijt'J:t'J~ - •••• (A.3) 
ii 

If we let s;'l'); = !P; and A; = s;/ Ui, then !p(s, z) 
becomes 

() 1 f" -,,(1-.) d 
!ps,z = (27rt 0 e a 

As all 8; --t <Xl the limits on the !P integration can be 
extended to ± <Xl with errors of only O[exp (-C8m 
appearing. 

If we let 

then 

!PC8, z) I'-' (27rfk 1'" e-"O-o) da{fr RO(aZ},.;2)} 
o .-1 

X {I + taZ t (p..,js!)(R1/Ro)".x,-' 

+ l.aZ L' I'-ii (R2) (R2) + ... } , 
4: 8~8j \Ro (UX,-2 \Ro a%)..j-~ 

where as usual the prime in the summation indicates 
that the terms with i = j are to be omitted. 

From standard integral tables one finds 

Ro(a) = (27r/ai exp (-I/2a), 

(R2/Ro)a = a-I(I - a-I), 

(R4/RO)a = a-2(3 - 6a- 1 + a-2
). 

Then, if we let 

S,,(z) = i'" a-!"e-"(H) exp (-2~ :E },.~) da, 

we find 

( ) (27rzf!k [s + ~ I'-ii 
!P S, Z 1"1 k £.... 4z 4 

UI ••• Uk i~1 U. 

+ 1 L' ....l!-;; 2 [Sm - Z-l(},.~ + },.~)Sk+4 
ZUiUj 

+ Z-2},.;},.;Sk+6] + ... J. 
In the special case z = I, we see that 

S .. (I) (2/},.2)!(n-2)r(!n - 1) 

k 

,,2 = L},.! = L 8;/0"!. 
,=1 

Generally, 

S.,(z) = 2(~r"-\Z(1 - z)]iCn
-

2
) K!"_I([~2 (1 - z) T) 

where K. is the vth modified Bessel Function of the 
second kind. When z = 1 

( 1) - r(!k - I) {I _ (I - !k) ~ 1'-" 
!P S, - 2 !k~k 2 2 2 £.... 2 

UI ••• Uk7r 1\ ";-1 0", 

- (I/2},.2)(1 - !k) L' 1'-2';2 [1 - k("~ + "D/2A9 

(]' _jUj 

+ k(k + 2)},.~},.~/,,4] + O(},.-4)}. 

If !PI(S, z) is defined [see Eq. (1.9)] as 

!PI(S, z) 

then as S --t <Xl and z --t 1 when k ;:::: 3, then [see 
Eq. (I.186)] 

which is the leading term in !pCs, 1). Hence if we let 

!pCs, z) = !PI (s, z) + !P2(S, z) 

where !P2(8, z) is defined as !pes, z) - <Pl(S, z), we see 
that when k ;::: 3 

lim !PI(S, 1) = o. 
s_'" !P2CS, 1) 

A.PPENDIX B. CALCULATION OF 2-D ",,(0, 1) FOR 
N x N LATTICE AS N -> <0 

The expression for !p(O, 1) in a finite lattice is 
(Eq.LI6) 

<p(O, 1) = N-2 E E {I _ ,,(2N1rT)}-1 
"1=1 "2=1 

t (N-l)/2] ] (N-I)/21 

= 4N- 2 L :E 11 _ ;\}-l 
I 

+ O(I/N). (B.I) 

As N --t <Xl this sum approaches a divergent integral, 
the divergence being related to the smallness of 
1 - A(2n/N) as (27rr/N) --t O. Hence one would 
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expect the main contribution to (0, 1) to result from 
small integral values of 1'1 and 1'2' In this range one 
can approximate A by [see Eq. (1.4)] 

A(27rr/N) t'J 1 - (27r2/N2)(o-iri + cr;r;) + .... (B.2) 

We now restrict ourselves to crl = cr2, the more 
general case being amenable to a similar analysis. 

The range of summation in (B.l) is divided into 
two parts; the first part containing those lattice 
points Crt, 1'2) such that (ri + 1';); < aN where a is 
small enough so that (B.2) is a good approximation 
of A for all these points, and the second containing 
the remainder of the lattice points. It can be shown 
that the contribution of the second set to !p(0, 1) 
remains bounded as N -7 IX>. The contribution of 
the first set is 

4N- 2 E E (N2/211"2cr~)(ri + r~rl. 
1«r1. 3 + r s ll )i<a.N 

When N is sufficiently large, the sum is well approxi­
mated by the corresponding integral, which we ex­
press in polar coordinates 

"'" ( 2 + 2)-1 JaN 21rj dj _ !: 1 _~1\T 
£..J 1'1 1'2""'" .2 - ogaIV. 

l<Cr,'+r.'l i<aN I 1 2 

Hence, as N -7 IX> for fixed a, 

!p(0, 1) '" (1/7rcrD log N. 

In the unsymmetric case tTl ~ cr2, one finds 

!p(0, 1) '" (1/1r(/'ltT2) log N. 

The above ideas can, with a little effort, be made 
completely rigorous. 

APPENDIX C. GENERATING FUNCTION FOR AVER­
AGE NUMBER OF POINTS VISITED AT LEAST T 

TIMES IN AN n-STEP WALK 

Let S!<l be the average number of lattice points 
visited at least l' times in an n-step walk. Then 

s!rl = Fi r - ll (0) + '" + F!,-l) (0) 

+ E' (FirJ(s) + FY)(s) + ... + F!')(s)}, (C.l) 
s 

where the primed summation proceeds over all 
lattice points except the origin. As usual FiT) (s) is 
the probability that the walker arrives at s for the 
rth time on the jth step. The sum 

F!r)(s) + F~T)(S) + .,. + F!')(s) 

represents the probability that the points has been 
occupied at least r times in n steps. The reason 

Fir- ll (o) + ... + F!r-o(o) 

is chosen to represent (1' - 1) returns to the origin 

instead of l' is that the walker started at the origin, 
so visiting the origin r times means returning to it 
l' - 1 times. 

It is convenient to define a quantity 

(C.2) 

Since S~ll = 1 and Sill = 2 while s~r) = s~r) = 0 
for r > 1, 

alD = 1 and a~') = 0 if l' > 1. (C.3) 

Also 

s~r) = Or,1 + air) + a~r) + ... + a!T). (C.4) 

Through the use of an appropriate Tauberian 
Theorem we will be able to find the asymptotic 
properties of s~r) in terms of the properties of the 
generating function 

00 

a (r)(z) = ~ 1,"a~r). (C.5) 
n-1 

Note that 

a~rl = F~r-l)(O) + E' F~')(s) 
• 

= [F!r-1l(O) - F!r}(o)] + E F!')(s). (C.6) 
• 

Hence if we multiply this equation by 1," and sum 
from n = 1 to co we find 

a<r)(1,) = {F(r-l)(o,1,) - F<r)(o, z)} + L: F(d(S, 1,). 
• 

From Eq. (1.20) we obtain 

a<r)(z) = {F(O, z)}'-1{1 - F(O,1,) + E F(s, z)}, 

while Eq. (LlS) implies 

a (r)(z) = {I __ l_}r-l 
P(O, z) 

8 

X {_I_ + E [PCS, z) - os.oJ}. 
P(O, z) • P(O, 1,) 

Finally from (L14b) 

a (T) (z) = {I - P(~, Z)Y-l {(I - z)P(O, z)} -1. 

From this expression and (C.4) one finds 

s<r)(z) = {I - P(~, Z)Y-l {(I - z)ZP(O, Z)}-l. (C.7) 

APPENDIX D. THE ASYMPTOTIC FORM OF 
P(O, z) AS z -+ 1 FOR 3-D LATTICES 

The generating function .. 
P(O, z) = (2!)" fff 1 _d:~(tg) (D.I) 
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can be expressed as 

-r 

The first part, Uo has been found by G. N. Watson9 

for simple, body-centered, and face-centered cubic 
lattices. His results are 

It can be shown that as z ~ 1 the range of integra­
tion can be made infinite in 0 if one is concerned 
only with terms first order in (z - 1). Then, if we 
let Xj = (J'jcpj and calculate 0 using polar coordinates 
with r2 = x~ + x~ + x: we find 

so that 

sc 1.5163860591, 

bcc (41lr1 [r(t)]4 = 1.3932039297, 

fcc 91 rei) }6Tll
/

31r-4 = 1.34466lO732. 

It is much harder to calculate the term of 0(1 - z). 
It has only been done for the simple cubic lattice. 

(D.3) Since 

We shall be concerned with the determination of 
oasz~1. 

The main contribution to 0 as z ~ 1 comes from 
values of cp close to the origin. We can write 

X(cp) = 1 - !«(J'~Cp~ + (J'~Cp~ + (J':CP:) + 0(cp4). (DA) 

(D.7) 

we find that for bee 

P(O, z) rv A:3 1 rm}4 - ~ [!(1 - z)]! + ... ; (D.8a) For example in the case of steps to the nearest- "±1r .. 

neighbor lattice points only on cubic lattices one for fcc 
finds from (1.5) that 

sc (J'l = (J'2 = (J'3 = (l)!, (D.5a) 

bee (J'l = (J'2 = (J'3 = 1, (D.5b) 

fcc (J'l = (J'2 = (J'a = (i)!. (D.5c) 

As cp ~ 0 and z ~ 1 the integrand of 0 becomes 

2/ {«(J'~cp~ + (J'~Cp~ + (J':CP:) 

X [(1 - z) + !(cp~(J'~ + Cp~(J'~ + Cp:(J'~) + ... ]}. 

(D.8b) 

More terms have been obtained for the sc latticell
: 

3 (3)' P(O, z) rv 1.516386 -:;;: 2" (1 - z)! 

9 (3)! + 1.384761(1 - z) - 41r 2" (1 - z)! + . .. . (D.9) 
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The positions of the singularities of the partial wave amplitude in the complex t plane are investi­
gated for that c~e of a relati~istic, two-particle elastic scattering amplitude satisfying the Mandel­
starn representatIOn. For a fimte number of intermediate states it is shown that the convex hull of 
singularities in the t plane is related to a growth indicator function. For an infinite number of inter­
mediate states it is demonstrated that the imaginary parts of the singularities in the t plane· are 
unbounded from either above or below. 

I. INTRODUCTION 

T HE concept of complex angular momentum was 
first introduced by Regge in connection with 

nonrelativistic potential scattering. 1 It has recently 
been applied to relativistic elementary particle scat­
tering where the momentum transfer of one channel 
is the total energy in the crossed channel. 2 Its use­
fulness for several different purposes has been well 
established in nonrelativistic potential scattering. 

One can show in potential scattering that bound 
states and resonances are associated with poles in 
the angular-momentum plane. This fact leads to the 
conjecture that all elementary particles and reson­
ances are associated with moving poles in the com­
plex angular-momentum plane. 3 Furthermore, the 
asymptotic behavior (large energy) of the cross 
section is related to the singularities in the complex 
angular-momentum plane. 4 

The purpose of this paper is to investigate the 
positions of the singularities of the partial wave 
amplitude in the left half of the complex-f (i.e., 
angular-momentum) plane from the point of view 
of axiomatic S-matrix theory. 

Before proceeding, we briefly summarize some 
essential properties of the partial wave amplitude 
in the complex angular momentum plane. 

Regge has shown that the partial wave amplitude 
for a superposition of Yukawa potentials is a mero­
morphic function of t in the half-plane Re t ;::: -!. 
If r times the potential has a certain number of 

* This work was conducted under the auspices of the 
U. S. Atomic Energy Commission. 

t The author's present address is Lawrence Radiation 
Laboratory, Livermore, California. 

1 T. Regge, Nuovo Cimento 14, 951 (1959). 
2 See, for example, G. F. Chew and S. C. Frautschi, Phys. 

Rev. Letters 7, 394 (1961). 
3 R. Blankenbecker and M. L. Goldberger, Phys. Rev. 

126, 1202 (1962), and G. F. Chew and S. C. Frautschi, Phys. 
Rev. Letters 8, 41 (1962). 

4 See, for example, V. N. Gribov, Nucl. Phys. 40, 107 
(1963). 

finite derivatives at r = 0, then the partial wave 
amplitude can be analytically continued to Re 
t < -!, the distance depending linearly on the 
number of finite derivatives of r times the potential. 6 

In the region Re t > -!, when the nonrelativistic 
energy E > 0, the poles lie in the upper half-plane, 
and for E < 0 the poles lie on the real axis. When 
we are able to continue analytically the partial 
wave amplitude to Re t < - !, the poles need not 
lie on the real axis when E < O. If they do not, 
however, they must occur in complex conjugate 
pairs.6 When E > 0 and Re t < -!, the poles 
need not generally lie in the upper half-plane.6 

In axiomatic S-matrix theory, if the validity of 
the Mandelstam representation is assumed, then a 
suitable continuation in the complex t plane can 
be defined for Re t ;::: N where N is the number 
of subtractions needed in the Mandelstam rep­
resentation. 7 The partial wave amplitude is hol­
omorphic for Re t > N. The existence and properties 
of Regge poles for Re t < N have so far not been 
established rigorously except for some tentative 
results in the elastic unitarity approximationS and 
for special cases where the crossed channel is 
neglected.9 

In this paper we restrict ourselves to the case 
of elastic pion-pion scattering without consideration 
of isospin, and assume that the elastic scattering 
amplitude obeys the Mandelstam representation. 
These restrictions are introduced for the sake of 
simplicity and are not crucial to the proof. The 

6 R. G. Newton, J. Math. Phys. 3, 867 (1962)' 4 1342 
(1963). ' , 

6 B. R. Desai and R. G. Newton, Phys. Rev. 129 1445 
(1963). ' 

7 See, for example, A. Martin, Phys. Letters 1 72 (1962) 
8 See, for example, R. Oehme, Phys. Rev. 'Letters 9' 

358(1962~ , 
9 A. O. Barut, "Analyticity in Angular Momentum of the 

Relativistic Many Channel S Matrix from Dispersion Rela­
tions and Unitarity," University of California preprint. 
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latter is based only on the analytic properties of 
the elastic scattering amplitude. 

In Sec. II we outline what is meant by the 
Mandelstam representation. We define the partial 
wave amplitude aleS) and relate its singularities in 
the complex .e plane to the Mellin transform of the 
absorptive part of the elastic scattering amplitude. 
In Sec. III we relate the Mellin transform of the 
absorptive part of the elastic scattering amplitude 
to its Laplace transform. To make the procedure 
clear, we first consider a case where the elastic 
scattering amplitude for fixed s has only a finite 
number of branch points in the complex t plane. 
We then rotate the path of integration of the Laplace 
transform of the absorptive part of the elastic scat­
tering amplitude in the comple~ t plane and, hence, 
analytically continue the partial wave amplitude to 
a larger region. In Sec. IV we consider the general 
case for which the elastic scattering amplitude has 
an infinite number of intermediate states (i.e., branch 
points). Since the branch points run to + and -
infinity along the real axis of the t plane we will not 
be able to rotate the path of integration of the 
Laplace transform of the absorptive part of the 
elastic scattering amplitude as we did for the case 
of a finite number of branch points. From this 
property we are able to show that the imaginary 
part of the singularities in the .e plane are neither 
bounded above nor below. 

II. PARTIAL WAVE AMPLITUDE 

Consider the reactions shown in Fig. 1 and given 
below 

1: ?r(P 1) + ?r(P 2) ---? ?r(P 3) + 'Ir(P 4), 

2: ?r(P1) + 'Ir(-P4 ) ---? 'Ir(Pa) + 'Ir(-P2), 

3: ?r(P1) + 'Ir( -P3 ) ---? 'Ir( -P 2) + ?r(P4), 

and define in the usual manner 

(li = c = m .. = 1), 

t = -(PI - P 4)\ 

s = -(PI + P 2)\ 

u = -(PI - P31, 

(1) 

(2) 

where s + t + u = 4 and Pi is the 4-momentum 
of the ith particle. 

Let A (8, t, u) be a function of three complex 
variables of which two are independent. Define it 
to be holomorphic except in the following regions; 

(1) 8 > 4 and real for all t; when 8 = 4, the 
A (s, t, u) has a branch point with the cut running 
from 4 to co. Likewise at s = (2n)2 for n = 1, 2, 3, 
• • " co there are branch points with cuts running 
from (2n)2 to co. 

FIG. 1. Diagram de­
scribing the pion-pion 
elastic scattering ampli­
tude. 

(2) t > 4 and real for all U; when t = 4, then 
A(s, t, u) has a branch point with the cut running 
from 4 to co. Likewise at t = (2n)2 for n = 1, 2, 3, 
• •• , co there are branch points with cuts running 
from (2n)2 to co. 

(3) u > 4 and real for all S; when u = 4, then 
A(s, t, u) has a branch point with the cut running 
from 4 to co. Likewise at u = (2n)2 for n = 1, 2, 3, 
•• " co there are branch points with cuts running 
from (2n)2 to co. 

The elastic scattering amplitude for the three 
processes of Fig. 1 is described by the one function 
A(s, t, u) in the following waylO: 

AI(s, t) = lim A(s + iE, t, u) 

where t < 0 and real; s > 4 and real, 

An(t, u) = lim A(s, t + iE, u) 

where t > 4 and real; u < 0 and real, 

Am(u, s) = lim A(s, t, u + iE) 

where u > 4 and real; 8 < 0 and real. 

(3) 

Let us consider the amplitude A(s, t, u) as a 
function of t for an arbitrary fixed s. The singularities 
of A(s, t, u) in the complex t plane are shown in 
Fig. 2. 

To construct the analytic function A(s, t, u) in 
terms of a Mandelstam representation, with a finite 
number of subtraction constants, it is necessary for 
fixed s that limt-o> IA(s, t, u)1 :s; tm. The power of m 
can be arbitrarily large, but must be finite. l1 For the 
proof that follows, we must strengthen this condition 
and assume that IA(s, t, u)1 is not only bounded 
by a large but finite power of It I but also that this 
power m' is not an integer. [The reason we must 

10 J. C. Taylor, "Special Topics in Dispersion Relations," 
NYO-9364, New York University . 

11 M. Surgawara and A. Kanazawo, Phys. Rev. 123, 
1895 (1961). 
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FIG. 2. Singularities 
of A( 8, t) for fixed 8 
in the complex t plane. _.,32_,J2 's- 04 16 

Iml 

strengthen this condition will become evident in 
Eq. (24). We want to take the Mellin transform of a 
function B"'(s, t) which is closely related to A (13, t, u). 
In order for this to be defined, the following two 
conditions must be satisfied: 

IA(s, t, u)1 ~ O(IW'). 
,~'" 

• fixed 

IA(s, t, u)1 -? OC/tl x ,), 
'-0 

• fix~d 

where X 2 < Xl' Since A (13, t, u) is analytic at t = 0, 
this implies that X 2 must be a positive integer. 
We also have that Xl < X2 + 1 from Eq. (23), 
so that Xl cannot be an integer.] This is not a very 
restrictive condition since if IA(s, t, u)/ does go 
asymptotically as !t!"" for some fixed 13, we only need 
to change 13 until the above assumption is satisfied. 

We first consider a case where A (13, t, u) has an 
arbitrary but finite number m of branch points on 
either cut (see Fig. 2). For convenience we assume 
that both cuts have the same number of branch 
points. The function so defined is called Am(s, t, u). 

Applying the Cauchy integral theorem to A "'(13, t, u) 
with the smallest number N of subtractions needed 
for convergence, we obtain for fixed 13, 

'" _ tN f'" A ";(13, it) dt' 
A (8, t, u) - 1r 14 (t' _ t)t,N 

N '" Am(s u') du' 
+ ~ 1 (:' ) IN + <P~-l(t). (4) 

1( 4 u -uu 

A ':(13, u) and A ";(13, i) are the discontinuities across 
the left-hand and right-hand cuts, respectively; i.e., 

A ';;(13, u) 

= lim [A "'(8, u + iE) - A "'(13, U - if)]/2i (5a) 

for t < -13, and 

A";(8, t) 

= lim [Am(8, t + if) - A m (8, t - iE)]/2i (5b) 

for t > 4. {P~_l (t) is a polynomial of degree N - 1 
in the variable t. 

For a finite number of branch points we will 
assume that crossing symmetry is still true!2 j i.e., 

A":(8, t) = A '::(13 , t). (6) 

We have thus succeeded in constructing an an­
alytic function Am(s, t, u) which is holomorphic in 
the cut t plane13 for fixed 8 and has m branch points. 
To include all the branch points we must take the 
limit of the sequence {A "'(8, t, u)} for m -? <Xl. 

It follows that 

A(8, t, u) = lim {A "'(8, t, u)}. (7) 

A (8, t, u) has the required properties of the Mandel­
stam representation, as stated below Eq. (2), and 
has the integral representation 

A(8 t u) = t
N 1'" A I(8, t') dt' 

, , 7r 4 (t' - t)t,N 

+ UN 1'" A"(8, u') du' + {PN-Iet), 
1( 4 U,N(U' - u) 

(8) 

where 
A.(8, t) = lim A ";(8, t), 

AuCs, u) = lim A:( 8, u), (9) 

<PN-l(t) = lim <P~_l(t), 
...... '" 

and N is the minimum number of subtractions 
needed for convergence of Eq. (8). 

The partial wave amplitude can be defined by 

11+1 

al (8) = 2 -1 dZPI(Z)A(s, t, u), (10) 

where Z = 1 + 2t/(8 - 4) for fixed 8 2: 4. From 
Eq. (8) it follows that alCs) is 

al (8) = ~ L: 1 

dZPl(Z){% bn(8)<P .. [ (Z - 1~(8 - 4) ] 

+ [t(Z - 1)(8 - 4)]N 
1r 

x 1'" dt' A,(s, t') 
4 t,N[t' - !(Z - 1)(8 - 4)] 

+ [-t(Z + l)(s - 4)t 
1( 

1'" du' A~(8, u') } 
X 4 U,N[U' + !(Z + 1)(8 _ 4)]' (11) 

12 F. M. Kuru and 1. D. Terentiv, Soviet Phys.-JETP 
13 607 (1961) [Zh. Eksperim. i Teor. Fiz. 40, 866 (1961)]. 

'13 The cut t plane is defined to be all those values of ct;lm­
plex t outside the portion real axis t ~ 4 and t ::; -8; I.e., 
{t: t €E [4,0:» and [-8, - CD) ,. 
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where b" is the nth coefficient of the polynomial 
<PN _ 1(t). 

For Re t ~ N the order of integration in Eq. (11) 
can be interchanged, and we get the Froissart­
Gribov formula 14 

a,eS) = [1 + (-I)'J2 
'IT"(s - 4) 

X i'" dt Q/(1 + s :: 4)A,(s, t), (12) 

where Q,(Z) is a Legendre polynomial of the second 
kind and has the following properties15 : 

(13a) 

( 
s - 4) X 2F1 1 + t, 1 + .f; 2 + 2t; --t- (13b) 

and 

2F1(1 +.f, 1 + t; 2t + 2; _s ~ 4) 

= ~ r2(1 + l + n)r(2t + 2)[ -(s - 4)/t"J (13 ) 
f='o r2(.f + l)r(2t + 2 + n)n! c 

for I(s - 4)/tl < 1. 
To study the analytic properties of a,eS) it is 

useful to recast Eq. (12) in the form 

a () = [1 + (-I)'J(s - 4/r2(t + 1) 
IS 'IT"r(2.f + 2) 

X {i'" dt C
L1 

A,(s, t) 

X 2F1(.f + 1,.f + 1; 2.f + 2; _s ~ 4)}. (14) 

In principle, a,eS) should now be separated for 
even and odd t for the sake of analytically continuing 
the two amplitudes separately.16 However, for odd 
integer t, it is clear that a,eS) = 0, so we only need 
to consider the case of even .f. In this case, Eq. (14) 
reduces to 

(i,(S) = 2(s - 4)'r2(.f + 1)/'lT"r(2.f + 2) 

X {i'" dt Cl-lA,(s, t) 

X 2F 1 ( t + 1, .f + 1; 2.f + 2; _ s ~ 4)}. (15) 

U V. N. Gribov, Soviet Phys.-JETP IS, 871 (1962) 
[Zh. Eksperim. i Teor. Fiz. 41, 1221 (1962)J. 

16 Bateman Manuscript Project, California Institute of 
Technology, Higher Transcendental Functions (McGraw-Hill 
Book Company, Inc., New York, 1953), Vol. 1. 

16 See, for example, A. Martin, Phys. Letters 1, 72 (1962). 

Equation (15) can be used to define an analytic 
function a(.f, s) in the complex t plane for Re t ~ N, 
which coincides with the partial wave amplitude 
(i,(S) for even integer values of t. Furthermore, it 
has been shown that aCt, s) is holomorphic for 
Re t ~ N. 16 We also assume that Eq. (15) defines 
a correct analytic continuation of aCt, s). That is 
to say, the analytic continuation defined by Eq. (15) 
for Re t ~ N, agrees with the given a,eS) of Eq. (10) 
when Eq. (15) is continued to integers less than N. 

In order to study the analytic properties of aCt, s) 
for Re t < N, we would like to have a simpler 
expression than Eq. (15). To construct one which 
contains only the leading singularities (i.e., the 
singularities farthest to the right) in the t plane, 
we separate from 2F1[1 + t, 1 + t; 2.f + 2; -(s - 4)/tj 
the first few terms of its asymptotic expression as 
t ~ co. These terms are denoted by g~ below. 

Let 

2F1(t + 1, t + 1; 2t + 2; -(s - 4)/t) 

= {2F1[t + 1, t + 1; 2t + 2; -(s - 4)/t] 

:t r2(t + 1 + k)r(2t + 2)[ -(s - 4)/t]k} 
k-O r(2t + 2 + k)k! r2(t + 1) 

+ :t r2(~ + 1 + k)r(2t + 2)[ -(s - 4)/tt 
k-O r(2t + 2 + k)k! r2(t + 1) 

= goes, t, t) + gh(S, t, t), (16) 

where 

goes, t, t) = 2F1[t + 1, t + 1; 2.f + 2; (4 - s)/t] 

:t r2(t + k + l)r(U + 2)[(4 - S)/t]k 
k-O r2(t + l)k! r(2.f + 2 + k) 

and 

gh(S, t, t) 

= 2F1[t + 1, t + 1; 2.f + 2; (4 - s)/t] - goes, t, t). 

Equation (15) then becomes 

a ( ) = 2(s - 4)'r2(.f + 1) 
IS 'IT"r(2 + 2) 

X {i'" dtgo(s, t, t)A,(s, t)C ' -
1 

+ i'" dtgh(s, t, t)A,(s, t)t- I
-
1} (17) 

for Re t ~ N. 
The first term in the braces of Eq. (17) is holo­

morphic in t for Re t > N - h - 1. [Since 

goes, t, t) ~ O(t)-h-l and IA(s, t)\ :::;; O(t)N, 
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it follows that 

11'" dt goes, t, t)A(s, t)t-l-ll 
~ i'" dt Igo(s, U)IIA(s, t)1 r l

-
1 < 0) 

for Re I > N - h - 1. Furthermore, since the 
integral is analytic in I, the first term in the braces 
of Eq. (17) is holomorphic for Re I> N - h - 1.] 
Therefore, the second term in the braces of Eq. (17) 
contains the singularities of a (I, s) farthest to the 
right in the complex I plane; therefore, this is the 
only term we need to consider in order to continue 
ceC/, s) analytically to the region Re I < N. 

1'" dt gh(S, t, t)A,(s, t)t- I- 1 

_ ± r2(£ + 1 + k)r(21 + 1)(4 - S)k 
- k-O 1'2(1 + l)k! r(21 + 2 + k) 

X 1'" r l
-

I
-

k A,(s, t) dt. (18) 

Equation (18) shows that the analyticity of 
a (I, s) in the complex I plane is related to the 
Mellin transform of the absorptive part of the 
amplitude. 17 

m. ANALYTIC CONTINUATION FOR 
A FINITE NUMBER OF INTERMEDIATE STATES 

In this section we will, for heuristic reasons, 
replace A, (s, t) by A ';(s, t) as defined in Sec. I 
and study the resulting analytic properties of a(/, s). 
This is equivalent to considering the elastic scatter­
ing amplitude with only the first m branch points 
on either branch cut. 

In the previous section we have shown that in 
order to continue a(/, s) analytically to Re I ~ N, 
we need only consider the properties of the Mellin 
transform of the absorptive part of the elastic 
scattering amplitude. 

We first study the holomorphic domain of the 
following related function 18 

mt;,I,[A ~(s, 0] == 1'" A ~(s, t)t- I- 1 dt. (19) 

This fnnction, as we already know, is holomorphic 
for Re I ~ N. However, we still do not know if we 
can extend this region further. The Mellin transform 

17 This relation between the singularities of the partial 
wave amplitude and the Mellin transform of the absorptive 
part of the elastic scattering amplitude was also pointed out 
by A. O. Barut and D. E. Zwanziger in Phys. Rev. 127, 
974 (1962). M. Froissart also used the Mellin transform in 
studying the complex angular momentum in potential scat­
tering in J. Math. Phys. 3, 922 (1962). 

18 Since k is an integer in Eq. (18), we can absorb it in l. 

of a function may have a natural boundary as 
shown by the following example. 19 

Let 

f

k for e-(k+1)' ~ x ~ e-k' 

F(x) = k = 0, 1,2, ... , 0) 

o otherwise. 

(20) 

So for Re p > 0 

mtL[F(x)] = 10'" F(x)x P
-

I dx = 10'" F(e-·)e- P
• dy, 

where we have substituted x = e-·. F(e- U
) now 

becomes 

for e ~ y ~ (k + 1)~ 
k = 0, 1, , 0) (21) 

otherwise 

and we find 

1 ~ -k'p 
= -.c..... e . 

p k-I 
(22) 

This power series is known to have a natural 
boundary at Re p = O. 

In Eq. (19), A ';(s, t) is only defined along the 
real axis. In order to study the analytic properties 
of the Mellin transform mt~.tlA ';(s, 0] of A ';(s, t), 
it is more convenient to define an analytic function 
B"'(s, t) of t, the Mellin transform of which is related 
to mtL[A,(s, t)]. For computing mt~.,[B"'(s, 0], the 
path of integration may be varied, which we cannot 
do for :m~.,[A;n(s, t)]. Bm(s, t) is 

B'"(s, t) = t
N 1'" A ~(s, t') dt' 

7r 4 t,N (t' - t) 

+ (- ON 1'" A ~(8, t') dt' 
7r 4 t,N (t' + t) , 

(23) 

where A ';(s, t) is defined in Sec. 1. The function 
Bm(s, t) has the following properties: 

(1) IBmCs, t) I ~ O(ltIN') as It I ~ 0). This follows 
from the fact that IBm(s, t)1 = OCIAm(s, t, u)i) as 
It I -7 0), and we have assumed that IAm(s, t, u)1 ~ 
OC/tIN,) where N - 1 < N' < N, since N is the 

19 G. Doetsch, Handbuch der Laplace Transformation (Ver­
lag Berkhauser, Basel, 1950), Vol. I, p. 151. 
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minimum number of subtractions needed for con­
vergence in Eq.(4). 

(2) B"'(s, t) is a holomorphic function in the 
t plane except for a right-hand cut running to '" 
and branch points at (2n)2 where n = 1, 2, ... , m 
and a left-hand cut running to - '" with branch 
points at (-2nY' where n = 1,2, ... ,m. 

Consider the Mellin transform of B"'(s, t) where 
the path of integration is from zero to infinity at 
an angle fJ to the re,al axis where 0 < 0 < r. We 
obtain (see Appendix A) 

mt~,t[Bm(s, t)] 

= [( _1)N. +/) l)~-lJ {mt:,,[A ';'(s, t)]}, (24) 
sm 7rP. 

where, for convenience, we have introducedp. = _t.20 
Since mt:.,fA~(s, t)J is analytic for p. < -Nt and 
Ilsin (rp.) is analytic everywhere except when p. is 
an integer or zero, then mt~,,[B"'(8, t)] is analytic 
for -N < p. < _Nt (see Fig, 3) with N' not an 
integer. 

With the use of Eq. (24) we obtain the more 
convenient representation of mt~.4fA ";(8, t)] discussed 
before: 

where 0 < fJ < 7r. 
The reason that this representation is more con­

venient is that 0"'(8, t) is defined everywhere in the 
upper half of the complex t plane, whereas A ";(8, t) 
is only defined for real t. 

We demonstrate that the first term on the right­
hand side of Eq. (25) is an entire function of p.. 

Consider the region Re p. > -N. Then 

• () 1(2",>,oH 
sm 7rP. tllo- 1B"'(8 . t) dt 

[(-It+(-ly-l] 0 ' 
(26) 

has an integrand which is holomorphic in p.. Since 
IB"'(8, t)1 ~ O(!t!N) as t ~ 0 [see Eq. (23)1, the 
integrand is continuous for all t on the path of 
integration if j.I. < -N. Furthermore, the path of 
integration is rectifiable, so that the integral in Eq. 

20 When we are working with the Mellin transform, we 
use J.L as the variable, but when we are working with the 
Laplace transform it is more convenient to use t. 

Imp. 

tl 
1;1 
\/ FIG. 3. Region of ana-

-N-I _~I, -Nfl Re lyticity of the Mellin 
'~~~:;.!.....--I-o-----"= transform of Cm(s, t) in 

I? h I : t e comp ex J.L plane. 

~ I 
(26) defines a function of p. which is analytic for 
Re p. > -N. A path is rectifiable if it is of finite 
length; e.g., IJ~2mp.i' dtl = (2111,)2 < a:>. 

Now eonsider a case where Re j.I. < Nt. From 
Eq. (25) we find 

sin (1rP.) l(2m)"" tP-1B"'(s t) dt 
[(-It + (_ly-l] 0 ' 

= -sin (7rP.) fa> tl'-lB""(s t) dt 
[{_I)N + (-I)P-1J (2m)"U ' 

+ i'" A":(s, t)t"-l dt. 

Since 

and 

!B"'(s, t)1 ~ OClt!N,) as It I ~ a:> , 

IA";(s, 01 ~ O(ltIN
,) as It I ~ a:> 

IB"'(s, t) I ""4 0(1) as t ~ (2m)2e" , 

IA ";(8, t)1 ~ 0(1) as t ~ 4, 

(27) 

both integrals on the right-hand side of Eq. (27) 
converge for Re j.I. < -N' and Eq. (27) defines a 
holomorphic function in this region. Hence 

. () 1(2".)"" 
sm 1rJ.! tllo-

1B"'(s t) dt 
[(_I)N + (-1)"-1] II ' 

(28) 

is an entire function in the p. plane. Using this fact 
we only need to consider the second term in Eq. (25) 
which is 

sin (7rP.) f",,16 dtB"'C t)tP-1 
[( _I)N + (-I),,-1J {2m»," 8, . 

With the transformation t = e'"(2m)Ve, we find 

f'" . B'"(s, t)t"-1 dt 
(2m) ",8 

(29) 
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Imw 

.3 .. 

FIG. 4. Path of 
integration of the 
generalized Laplace 
transform of (}m( 8, w) 
in the w plane. 

; ~,.. -H'7-----l-~ 

R.w-.------~------... 

where Cm(s, w) = Bm[s, etD (2m)2e iB] and is analytic 
for all Re w ~ O. Reintroducing e as the variable, 
the integral in Eq. (29) is proportional to 

.,c[Cm(s, w)] == 1'" Cm(s, w)e- tDl dw, (30) 

where we have let IJ. = -e. 
Since Cm(s, w) is holomorphic for Re w ~ 0, 

we can generalize the Laplace transform in Eq. (30) 
so that the path of integration makes an angle 8' 
where -71"/2 < 8' < 71"/2 with respect to the real 
axis in the w plane (see Fig. 4). We use the following 
notation: 

.,cB'[Cm(S, w)] = {,.iI Cm(s, w)e-wl dw. (30a) 

By rotating the path of integration in the Laplace 
transform we see that, under certain conditions, 
the convergent half-plane of t likewise rotates and 
therefore analytically continues Eq. (2.5) to a larger 
region then defined by its integral. We can therefore 
define (tl(S) in a larger region. 

In order to demonstrate this continuation, we 
make use of the following theorem: 

Theorem 121: If F(z) is analytic in a Riemann 
surface between the angles a < arg z < fJ with the 
exception of z = 0 and z = <Xl, and satisfies the 
conditions 

(i) IF(z) I < Aea
< with a > 0 and z = reiD 

(ii) !F(z) I < Br- b with b < 1, 
• -0 

then 

(31) 

converges for a < 8 < fJ and Re (pe iB
) > a. These 

are the collection of half-planes which are perpendic-

21 See Ref. 19, p. 366. 

ular to the ray of length a along 8 and bounded 
by a < 8 < {3 (see Fig. 5). All of these integrals, 
.,cB[F(Z)], are elements of the same analytic function 
and therefore form the basis of analytic continuation. 

There exist many different possibilities for the 
convex hull of singularities of .,cB[Cm(S, w»). To show 
this we even limit ourselves to the special case that 
Cm(s, w) is of the exponential type for Re w ~ 0; 
that is, we assume that there exists a constant b 
such that 

Icm(s, w)1 S ehl 
.. 

1 for Re w ~ O. (32) 

Using Theorem I, we note that in this special 
case .,cB(Cm(S, w)] is holomorphic, at least outside 
the horizontal left-half strip 

Re e S b, 11m tl s b. (33) 

In order to enlarge its holomorphic domain, we 
will define the growth indicator22 of Cm(s, w) as 

V("" ) = I' (log Icm(s, Iwl e' </» I) 
,/" s 1m sup I 1 

1.,1-", <f> W 
(34) 

for -w/2 S 4> S 71"/2. 

Consider the half-planes H</>, defined by 

Re (M</» S V(4), s), -71"/2 S 4> S 71"/2, (35) 

where at the endpoints we replace V (4), s) by its 
limits. The intersection of all the H</> within the 
region of allowed 4>, defines a region T; i.e., 

T = ()H</>. (36) 
</> 

Then by means of Theorem I it can be shown that T 
is the convex hull of singularities22 .23 of.,c6[Cm(s, w)]; 

ReI 

Iml 

FIG. 5. Rotated bound­
ary showing the region 
of analyticity of the 
Laplace transform of 
C(s, w) in the t plane . 

22 See Ref. 19, p. 378. 
23 E. Hille, Analytic Function Theory (Ginn and Company, 

Boston, Massachusetts, 1962), Vol. II, p. 463. 
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hence, ,e[Cm(s, w)] is holomorphic in the t plane 
with the exception of the convex domain X. Equa­
tion (34) demonstrates that many possibilities exist 
for V(I/>, s), and hence for T, since Cm(s, w) can have 
various asymptotic forms. Consideration of Eqs. 
(24), (25), (28), (30), and Theorem I gives us all 
the convex hull of singularities of Eq. (19). Since h 
is arbitrary in Eqs. (17) and (18), even for a finite 
number m of intermediate states in the elastic 
scattering amplitude, the convex hull of singularities 
of a,eS) is determined by the singularities of Eq. 
(19). Exceptions are possible additional poles on the 
real axis at the negative integers. 

The convex hull of singularities of a(t, s) may be 
constructed from that of ;m:: .• [A ";(s, t)J as follows. 

Let Th be the convex hull of singularities of 
;m:i.~Z+h)rA";(s, t)J. From Eq. (17) it follows that 
the convex hull of singularities of aCt, s) for 
Re t > N - h - 1 is the union of all Tk for k 
0, 1, 2, ... , h; i.e., 

Since h is arbitrary, we can let it be as large as we 
like, hence Uk Tk for all k is the convex hull of 
singularities of aCt, s) in this special case of finite m. 

From the remarks above, we see that the position 
of the singularities of aCt, s) in the t plane requires 
knowledge of the growth indicator function of 
Cm(s, w). For an infinite number of intermediate 
states in the elastic scattering amplitude, the domain 
of singularities of aCt, s) in the t plane is not as 
arbitrary as for a finite number of intermediate 
states. In fact, we show that the imaginary parts 
of the singularities are unbounded. 

IV. CONTINUATION FOR AN INFINITE NUMBER 
OF INTERMEDIATE STATES 

Let us now consider the general case where the 
elastic scattering amplitude has an infinite number 
of branch points. In this case we are not able to 
proceed exactly as we did before. We cannot rotate 
the path of integration in the Laplace transform 
as we did in Eq. (30a) and hence we won't be able 
to use Theorem I to analytically continue to a larger 
domain. We are unable to rotate the path of integra­
tion because regardless of the point we rotate about 
or how small the amount of rotation, we will always 
run into a singularity since singularities extend all 
the way to infinity, unlike the case for a finite 
number of intermediate states. However, from this 
observation we will be able to prove by contradiction 
that the imaginary parts of the singularities in the 
t plane are neither bounded above nor below. 

To show that the imaginary parts of the sin­
gularities are neither bounded above nor below, let 
us consider the analogue of Eq. (19) with an infinite 
number of intermediate states; namely, 

;m:i.'t[At(s, t)] = t' At(s, t)C' -
1 dt. (37) 

By a development analogous to that used earlier, 
we obtain an equation similar to Eq. (23): 

;m::.t(At(s, t)] 

= sin (11',.,.) rm

•

U 

t~-IB(8 t) dt. (38) 
[(-It + (_Iy-l] 10 ' 

The path of integration can be taken, just as before, 
at an angle 8, (0 < 8 < 11'), to the real axis, since 
C(s, t) is analytic in the upper half-plane and 
tBes, t) vanishes at infinity for Re p, < -N. 

By means of the same argument used to establish 
the analytic behavior of the expression (28), we can 
conclude that 

sin (11'",) til t"-IB(s t) dt (39) 
[(-It + (_I)~-I] 10 ' 

is an entire function in the p, plane. Hence all the 
singularities will be contained in the term 

f
m. 19 

.iI t~-lB(s, t) dt. (40) 

With the substitution t = e"'+i8 and p, -I, 
Eq. (40) becomes 

e- ilB 10
m 

e-e",C(s, w) dw = e-;e8£8[C(S, w)], (41) 

where C(8, w) = B(s, ei8e"') and we have defined 
£8[C(S, w)] as a holomorphic function in the I plane 
for Re t > N: 

£8[C(S, w)] == 10
m 

e-I"'C(s, w) dw. (42) 

It has the following properties24 

l£o[C(s, w)] 1 S; const e- 8 
1m I 

for 1m t ~ 0 and Re I> N (43a) 

and 

1£8[C(S, w)] 1 S; const e( r-8) 1m I 

for 1m t < 0 and Re t > N. (43b) 

In order to show that aCt, s) has singularities 
running to infinity along the imaginary axis of the 
t plane we assume the converse; i.e., aCt, s) is 

24 See Ref. 19, p. 403. 
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holomorphic above some arbitrary point on the 
imaginary axis. This is equivalent to assuming that 
there exists an upper bound on the position of sin­
gularities of £8(S, w) in the t plane. We show that 
this gives us a contradiction. Hence, there can exist 
no upper bound on the singularities in the t plane 
of a(t, s). Likewise, the same argument is true for 
a lower bound. 

Assume that in the upper half-plane, with Re 
t < N, there exists an upper bound on the position 
of the singularities of £8(C(S, w)]. Assuming the 
above, we may draw a line which touches this 
bound and makes an angle if; with the vertical 
(see Fig. 5). Since, by assumption, £8(C(S, w)] 
contains no singularities to the right of this bound­
ary, it will have an analytic continuation. If we 
call this new function £~(C(s, w)], then the following 
properties are associated with it: 

(1) £~(C(s, w)] is an analytic continuation of 
£8(C(S, w)] 

(2) £~~O(C(s, w)] = £8(C(S, w)]. 

There can exist three separate cases that we must 
look at. They are the following: 

IC exp [1/1 1m (tijl-,)] I, 

(1) 1£~[C(s, w)]1 ~ 
lmte''''' ~ 0 

IC exp [1/2 1m (te'jI-,)] I, 
ImteW < 0, 

where 1/1 < fJ2 and for all if;' such that 0 ~ if;' < if;. 
(2) Case 1 is not true for any if;', 0 ~ if;' < if;. 
(3) Case 1 is true for some particular angle if;' = </> 

where 0 < </> < if;. 
Case 1 can be eliminated immediately, since, if it 

were true, we could rotate the path of integration 
of £~(C(s, w)] in the t plane and according to 
Theorem 1 this would imply that C(s, w) was 
analytic in the sector bounded by a line parallel 
to the real axis and one intersecting it at an angle 
-if; at t = O. However, this can never be true since 
no matter how small if; is, the triangle will always 
inclose a singularity of C(s, w). Hence, either Case 2 
or 3 must be correct if there exists an upper bound 
on the position of the singularities on the imaginary 
axis of the t plane, as we assumed. 

If we assume that Case 2 is true, then one of the 
following three conditions must be correct: 

(a) 1£~[C(s, w)] I ~ const lexp (1/1 1m te'''') I 
for 1m (te'';') ~ 0 

and 

1£~[C(s, w)]1 ~ const lexp (1/2 1m .fe''') I 
for 1m (.fe'''') < 0, 

where fJ1 ~ fJ2, if; > 0 and Re (te'''') ~ p > N. 
Here p is the length of the arm perpendicular to the 
tilted plane (see Fig. 5). 

(b) 1£~[C(s, w)]1 ~ const lexp (1/1 1m .fe'''') I 
for 1m .fe'''' ~ 0 

and Re te'''' ~ p > N for all fJ1 < fJ2. 

(c) 1£8[C(S, w)]1 ~ const lexp (1/2 1m te'''')1 

for 1m .fe'''' < 0 

and Re te'''' ~ p > N for all 1/1 < fJ2. 

Assume Condition (a) to be correct and let if; -'-t o. 
This implies that 

1£~[C(s, w)]1 = 1£8[C(S, w)]1 ~ const e" 1ml 

for 1m t ~ 0, and that 

1£~[C(s, w)] I = l£o[C(s, w)] I ~ const e~,rm I 

for 1m t < 0 and fJ1 ;?: fJ2. However, this contradicts 
Eqs. (43a) and (43b). 

Consider Condition (b) to be correct and again 
take lim if; -'-t o. This condition implies that 

1£~[C(s, w)] I = 1£8[C(S, w)] I ;?: e~' 1m I 

for 1m t ~ 0 and all fJ1 < fJ2. This contradicts 
Eq. (43a). 

Likewise, if we assume Condition (c) to be correct 
and let if; -'-t 0, this will give us a contradiction to 
Eq. (43b). Hence, Case 2 can never be correct. 

Therefore, to complete our argument all we must 
show is that Case 3 can never happen. 

If Case 3 is correct, we restrict our angular region 
to if;' such that 0 < if;' < </> (see Fig. 5). Restricted 
to this smaller region, it follows from the same 
arguments as above that Cases 1 and 2 cannot be 
satisfied, since the arguments were independent of 
how big the sector angle was. Therefore, Case 3 
must be correct in this smaller sector. We can again 
restrict our region to a smaller sector; i.e., 0 < if;' < </>' 

and continue this process until Cases 1 or 2 are 
correct and then we will have a contradiction, since 
Cases 1 and 2 can never be true, no matter how small 
the scctor is. Hence, Case 3 must be true no matter 
how small a sector we choose. This gives us a 
contradiction, as can be seen with the use of the 
following theorem. 

Theorem II: A function fez) which is holomorphic 
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in a sector of opening wand which is bounded on 
the boundary by e~ 1.1 is either bounded in the closed 
sector by e~'" or else 

lim sup {max If(reitl-') - exp (7)T + tlr";''') I I ~ 0 

for some tI > O. 

The proof of Theorem II is found in Appendix B. 

Notice also that 

1£~[C(s, w)] I ~ fCltD < co, (44) 

where t = It I ei
(of

l
+r/2) and independent of v': where 

o ~ v;' ~ cpo cp < 1/1 is a particular angle at which 
Case 3 is satisfied. [One way to choose f(lt!) would 
be the following: Let f(ltl) = max", 1£ [C(s, w)]I, 
where t = It I ei

(of'+rl2), 0 ~ 1/1' ~ 1/>.] From the 
argument above, I/> can be arbitrarily small. 

Theorem II can be applied to £~[C(s, w)] with 
sector opening I/> and 1] = max (7)1 sin 1/>, 8). We 
notice that £~[C(s, w)] cannot be bounded in this 
closed sector by e~ 11/, since if it were, then Case 1 
would be true in this sector and we know this can 
never happen. This implies that for every E > 0 
there exists an To such that for r > ro 

sup max 1£~[C(s, w)]1 ~ exp (7)T + tlrTI</» - E 

and since we can choose cp as small as we desire, 
we can always find a I/> such that e~r+~r - E> fer). of'</> 

This gives us a contradiction, since 

1£~[C(s, w)]1 ~ exp (7)r + ~r.:I</>') - E > fer) 

which is contrary to how fer) was chosen [see 
Eq. (44)]. 

We have now succeeded in showing a contradic­
tion of the initial assumption that there exists an 
upper bound on the position of the singularities of 
£~[C(s, w)] in the upper half t plane for Re t ~ N. 
A similar argument can be used to show that there 
also exists no lower bound. Hence, there exists an 
infinite number of singularities running to infinity 
along the imaginary axis in both directions. 

Looking at Eqs. (38) and (40), we see that Eq. 
(37) has the same singularities £~[C(s, w)]. From 
Eq. (17) we note that the singularities of aCt, s) 
for Re t > N - h - 1 are the same as the sin­
gularities of 2::-0 mr~.(/+k)[At(s, t)] except for 
possible additional poles on the real axis at the 
negative integers. Since h is arbitrary, we can let 
it be as large as we like. Hence, the position of 
the singUlarities of aCt, s) in the t plane will be 
the same as those of 2:Z.o mr~.(/+k)[At(s, t)] with the 
possible exception mentioned previously. If there 

are no cancellations of singularities in the sum 
2:;.0 mr~.(/+k)[A,(s, t)], then aCt, s) will have an 
infinite number or singularities going from + ex> to 
- co along the imaginary axis just as mr~.l,[At(s, t)]. 

In principle, it is possible that the singularities 
in the sum 2:;.0 mr~.(,l+k)[At(s, t)] cancel. However, 
it is obvious that the singularities farthest to the 
right in the t plane of mr4~:[At(s, t)] cannot cancel. 
Hence there will still exist an infinite number of , 
singularities running from i co to -i ex> in the t plane. 
This concludes our proof. 

V. CONCLUSION 

It has been shown that if the elastic pion-pion 
scattering amplitude satisfies the Mandelstam rep­
resentation, then for a finite number of intermediate 
states the convex hull of singularities of the partial 
wave amplitude is related to a growth indicator 
function. However, for an infinite number of inter­
mediate states there are stricter conditions on the 
positions of the singularities of aCt, s) in the complex 
t plane. In fact, for Re t ~ N, where N is the min­
imum number of subtractions needed for converg­
ence in the Mandelstam representation, there exists 
an infinite number of singularities on one or more 
axes parallel to the imaginary one of the t plane 
(with Re t ::; N) , extending to infinity in both 
directions. We have not shown that this is a natural 
boundary nor that the singularities lie on one line; 
however, this may very well be the case. 

This proof is not peculiar to the pion-pion elastic 
scattering amplitude nor of the Mandelstam rep­
resentation, but is based only on the fact that the 
elastic scattering amplitude is an analytic function 
for fixed s and has branch points running to infinity 
along the real taxes. 

ACKNOWLEDGMENTS 

I wish to express my sincere gratitude to Pro­
fessor Ernest Henley, of the University of Washing­
ton, for his interest and the great amount of time 
he devoted to patient criticism of this study. I also 
wish to thank Professor Boris Jacobsohn for his 
helpful comments. 

APPENDIX A 

To take the Mellin transform of Bm(s} t) we define 

Define the Mellin transform of fCt) to be 

1
",(6) 

mrct) = 0 f(t)t~-1 dt, (AI) 
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where the path of integration is taken along a ray 
from zero to infinity, making an angle 8 to the real 
axis where 0 < 8 < 7r. 

Let t = re- i9, then 

;m(f) = 100 

dr e-i9r~-le-iS(~-1) A(re- iS) 

= e-i9~ i oo 

dr r~-lA(re-i9) 

= e-
iOP 1'" dr r~-1 100 

dt cf>(t) 
7r 0 4 

X t _Ire-is + t ~:~~i9} (A2) 

where we have used the equation 

f(t) = ; 1'" dt' cf>(t){t' ~ t + ~;-~:}. 
Interchanging the order of integration in Eq. (A2) 
gives 

;m(f) = e-
i8p

+
iB 1'" dt cf>(t) 

7r 4 

X 1'" dr{ ,I + (:-It \'.-1. (A3) 
o te'S - r te'O + rf 

The evaluation of the second integral results in 

1 1'" d P-l{ 1 + 1 } - r r '0 '0 
7r 0 te' - r te' + r 

. 1 {_(_teioy-I + (-It(te i8y-I) 
sm (7rP.) 

= t~-.lei8("-1l {_ (_Iy-l + (-Itl. (A4) 
sm (7rP.) 

Thus Eq. (A3) becomes 
;m(f) = e- iO (,,-1l 

1'" dlcf>(tW-l[ - (_l)P-I + (-It]ei8(~-1l 
X 4 sin (7rfJ.) 

= 1'" dt r-1 cf>(t)[( -It - (-Iy-I] , 
4 sm (7rP.) 

where 0 < p. < N - N'. 
H 1/I(p.) is the Mellin transform of f then 1/I(fJ. - N) is 

the Mellin transform of BIn(s, t) where BIn(s, t)CN = 
f(t). This gives us 

;m[Bm(s t)] = (-It - (_Iy-l-N 
, sm 7r(p. - N) 

X 1'" dt t~-I-N A ~(s, t). 

If we let p.' = p. - N, then 

X [" dt' t,,,'-1 A 7(s, t'), (A5) 

for 0 < fJ.' + N < N - N' or -N < fJ.' < - N'. 

APPENDIX B 

Theorem II; Consider a function fez) which is 
holomorphic in a sector of opening w formed by the 
intersection of rays a and b. Ray a is defined to be 
the line from the origin to infinity along the positive 
imaginary axis. Ray b is the line from the origin 
to infinity making an angle w + 7r /2 with respect 
to the positive real axis, where 0 < w < 7r/2. 
If fez) is bounded on the boundary by e~(') then 
fez) is either bounded in the closed sector by e~(') 
or else 

lim sup {max /f(rei~')/ - exp (T)r + {3r~/1D)1 ~ 0 

for some {3 > o. 
Proof; The proof of Theorem II is a trivial con­

sequence of a theorem by Phragmen and Lindelof 
which says: 

Theorem (Phragmen-Lindelof)22; A function fez) 
which is holomorphic in a sector of opening wand 
which is bounded on the boundary of the sector is 
either bounded in the closed sector or else 

for some (3 > O. 

Define the function g(z) to be g(z) = e "(~/.in w) ; 

then /g(z)/ ~ e-~I'I on ray a and /g(z)/ ~ e-
1zl

• Thus, 
we have that /f(z)g(z)/ ~ e-~I'le+~I'1 ~ 1 on ray a 
and /f(z)g(z)/ ~ e-,ze ~ 1 on ray b. Hence, we may 
apply the Phragmen-Lindeloh theorem to f(z)g(z). 
Then, either f(z)g(z) is bounded everywhere in the 
sector or else 

lim sup {max /f(reiO)ei~Z/ - exp ((3r" I1D
) I ~ 0 

for some {3 > o. 
This is obviously equivalent to 

lim sup {max /t(reiO) / - exp (T)r + (3/lw)} ~ O. 
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Effects of Finite Sample Size on the Measurement of Transport Quantities 
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A determination is made of the temporal evolution of the momentum autocorrelation function 
for a noninteracting gas constrained by walls. A frequency-dependent dielectric constant is calcu­
lated from the latter by applying an appropriate Kubo relation. Deviations from the Drude conducti­
vity are obtained which, for high frequency and/ or large systems, are found to be '" o(102/PrTIM 2L2) 
where L is the spatial dimension of the assembly and Col the frequency of the applied field. ' 

A similar calculation is performed to determine the effects of boundaries upon measurements of 
scattering cross sections for slow neutrons. It is found that, for realistic experimental conditions 
wall perturbations are unlikely to be of importance. ' 

I. INTRODUCTION 

I N theoretical investigations of the relationships 
between macroscopic transport phenomena and 

the microscopic properties of matter, it is frequently 
stipulated that the macroscopic system be of infinite 
spatial dimension. Such an assertion corresponds to 
assuming that boundary perturbations which might 
be introduced into an actual experimental measure­
ment would be negligible, relative to contributions 
due to interactions between the constituent particles 
of the assembly of interest. Indeed, the higher the 
density of particles or the greater the relative 
strength of interactions between them, the less 
important should be any perturbations due to wall 
effects. 

It is of interest to supplement these rather general 
qualitative remarks with explicit calculations. 
Ideally, one would solve the complicated finite­
space n-body problems associated with transport 
phenomena being considered. Unfortunately, the 
latter is usually a very difficult task. However, by 
neglecting interactions between particles, thus con­
sidering only the effects of collision of particles with 
the walls, one can at least obtain useful upper 
bounds for the errors which might be introduced 
into measurement in virtue of the finite size of an 
experimental system. In the following work, we 
consider this question for two particular transport 
quantities of interest: (1) the frequency-dependent 
dielectric constant and (2) the cross section for the 
scattering of slow neutrons. 

In the course of investigating the first of these 
phenomena, we also solve the ancillary problem of 
calculating the temporal evolution of the momentum 
autocorrelation function for a gas of noninteracting 
particles constrained by finite boundaries. As a 

* National Science Foundation Postdoctoral Fellow. 
t Present address: National Bureau of Standards, Wash­

ington, D. C. 

model which demonstrates essential features, we 
choose a one-dimensional box and assume specular 
reflection of particles at the walls. The unconditioned 
probability density for locating particles in phase 
space is taken to be Maxwellian in momentum space 
and uniform in configuration space. Thus, in Sec. II, 
an explicit determination of the temporal behavior 
of the autocorrelation function for all t ~ 0 is 
obtained. It is interesting that, although no in­
formation is lost when a particle collides with a 
wall (as a consequence of the assumption of specular 
reflection, the momenta before and after collision 
are perfectly correlated), it is found that phase 
mixing introduced due to the initial distribution is 
sufficient to insure the temporal relaxation of the 
autocorrelation function. Initially positive, the latter 
decreases, becomes negative, and finally decays 
asymptotically to zero (cf. Fig. 1 , below). 1 

After having obtained the momentum autocorrela­
tion function, the dielectric constant may be cal­
culated according to an appropriate "Kubo rela­
tion.,,2.3 Thus, in Sec. III, certain aspects of the 
frequency dependence of the dielectric constant are 
investigated, emphasis being given to obtaining 
estimates of perturbations which might be intro­
duced into measurement of the latter as a con­
sequence of the finiteness of a large system. 

In Sec. IV, consideration is given to a similar 
problem concerning the measurement of cross sec­
tions for the scattering of slow neutrons.4.5 The 

1 ;Recently, I. Opp~nheim and P. Mazur (Physica, to be 
publ18hed) have consIdered the temporal evolution of the 
momentum autocorrelation function for Brownian motion in 
finite systems. Although the details of the relaxation are not 
explic~tly. cal~ulate.d in the latter study, similar asymptotic 
behaVIor 18 d18cermble. 

2 M. S. Green, J. Chem. Phys. 20, 1287 (1952); 22, 398 
(1954). 

3 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957). 
4 L. Van Hove, Phys. Rev. 95, 249 (1954). 
6 R.. Glauber,. Phys. Rev. 98, 1692 (1955); Lectures in 

Theoreitcal PhYSfCS (Boulder Lectures), Vol. IV (Interscience 
Div., John Wiley & Sons, Inc., New York, 1963). 
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model system chosen for this calculation is the same 
as that described above. Scattering functions are 
obtained by taking space-time Fourier transforms 
of G.(q, t / qo) (the latter being defined as the condi­
tional probability density for finding a particle in 
the neighborhood of configuration point q, at time t, 
given that it was located at qo at time zero). Here, 
too, an estimate is made of the order of magnitude 
of spurious values introduced into a measurement 
of the scattering functions due to the finite spatial 
extension of the scattering system. 

In summary, the following calculations have as 
their primary purposes: (1) a demonstration of the 
explicit temporal behavior of the momentum auto­
correlation function for a finite system; (2) the 
identification of parameters determining the im­
portance of wall perturbations occurring in measure­
ments of the particular transport phenomena dis­
cussed above; and, (3) the estimation of the ranges 
of these variables for which the perturbations are 
significant. 

n. MOMENTUM AUTOCORRELATION FUNCTION 

We first investigate the temporal evolution of the 
momentum autocorrelation function for a one-dimen­
sional noninteracting gas constrained by walls at 
which particles experience specular reflection. 

The autocorrelation function net) may be obtained 
as follows: 

net) == (P(O)·p(t» 

(2.1) 

where (p; t / Po, qo) is defined as the expected value 
of the momentum of a particle at time t, given 
that at t = 0 it had momentum Po and was located 
at qo. fo(Po, qo) is the unconditioned probability 
density for finding a particle in the neighborhood 
of phase point (Po, qo) at time zero. 

Upon choosing a coordinate designation such that 
the walls are located at q = 0 and q = L then, 
as a consequence of the assumption of specular 
reflection (by which it is meant that the collision 
of a particle with a wall is an instantaneous event 
which does not change the absolute value of the 
momentum of the particle), it may be readily shown 
that 

where 

h •.•• == 

+1 for m(2nL - qo)/t ~ Po 

< m([2n + 1JL - qo)/t 

-1 for m([2n - 1JL - qo)/t 

~ Po < m(2nL - qo)/t, 

(2.3) 

n being any integer, inclusive of zero. Consequently, 
upon taking the equilibrium probability density to 
be Maxwellian in momentum and uniform in con­
figuration space within the box, Eq. (2.1) and 
Eq. (2.2) imply 

rL f+O> -fJv.'/2m 
net) = L -1 10 dqo _0> dpop~h, .•• (Po) (~'II"m/3 i)! , 

(2.4) 
where /3-1 == kT. 

After introducing Eq. (2.3) into the latter equa­
tion, some simple coordinate transformations provide 

(2'11"m/3-1)in(t) 

1 f+L12 ~[iLmI21 15Lml21 
= - d dp + dp + 

L -L12 0 3Lml21 
... J 

[f 3Lm121 17Lml21 
- dp + dp + 

Lml21 5Lml21 
... J} 

X {(P - qm/t)2e-(fJ/2m)(v-.m /IJ' 

+ (p + qm/t/e-(fJ/2m) (v+.m/ll' J. (2.5) 

Next, interchange the order of the q and p integra­
tions, and also notice that 

f
+L12 fa> (I) 

-L12 dqF(q) = _a> dqF(q)H. -i ' 
where 

H.(L/2) == {1 if /q/ ~ !L 

o if /q/ > !L 

- ! f+a> dk sin (kL/2) -ik< 
- k e . 'II" _a> 

For example, 

f
+L12 [ f3 ( qm)2] 

-L12 dq(p - qm/t/ exp - 2m p - -t-

= (2'11"m,s-1)! ..i.-j+a> dk sin (kL/2) {1 _ k2
t
2
} 

'll"f3 -a> k 13m 

( 
ikt k2e) Xexp -~--. 

m 213m 

Consequently, Eq. (2.5) can be expressed as 

4 0> [ t
2 

] net) = 'II";l ~ (-1)" 1,,(t) - 13m I,,(t) , 

where 

1 () = 1+0> dk sin (kL/2) (_k2t2) 
"t - _0> k 2 exp 2mf3 

X sin {(n + !)kL) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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and 

f+cc (-ee) 
1,,(t) == _'" dk sin (kL/2) exp 2m/3 

-m/3 aI. 
= -t-Tt· 

Defining 

X sin {(n + !)kL} 

'" 
1 == :E (-1)"1,,(t), 

.. -0 

(2.10) 

(2.11) 

then, by explicitly evaluating the integrals given by 
Eq. (2.10), it is seen that 

1 = (fJm7r
)' 2t2 

X {I + 2 ~ (-1)" exp (_f3~~2L2)}. (2.12) 

But, the term in the brackets can be identified with 
the zeroth theta function, 6 defined by 

'" 
t1o(Uj iv) == 1 + 2 :E (-I) .. e- ..... • cos (27rnu), (2.13) 

.. -1 

so that 

(2.14) 

An advantage of making such an identification 
is that one may now make use of the following 
inversion formula 6 : 

(2.15) 

where 
cc 

t12(Uj iv) == 2 :E e-"'("+l)' cos [7r(2n + 1)uJ. (2.16) 
,,-0 

Thus, an alternate form for Eq. (2.12) is given by 

1 = L t12(O j i27rt2/ mfJL 2) 

27r cc (27r2(n + l)2t2
) 

=-:Eexp - 2' 
L ,,-0 m/3L 

(2.17) 

We can now evaluate let) == :E In(t). From 
Eq. (2.10), 

let) = -(mfJ)-l [ dT[T1(T)] + 1(0), (2.18) 

where 1(0) is evaluated by imposing nco) = m/fJ. 

8 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, Cambridge, England 
1946), 4th ed. 
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FIG. 1. Temporal evolution of the momentum autocorrela.­
tion function, as a function of the dimensionless time variable 
T ;5 (2r2/m{3L2)lt. 

Hence, 

27r '" { m{3L
2 

let) = mfJL ~ 47r2(n + !? 

( -27r
2
(n + we)} " 7rL X exp m{3L2 0 + 4" 

L cc 1 (-27r
2
(n + Wt2) 

= 27r ~ (n + !l exp m/3L2 . (2.19) 

Finally, from Eqs. (2.8), (2.10), and (2.19), the 
following expression for the autocorrelation func­
tion is obtained: 

m {2 '" 1 (-27r
2
(n + !)2t2

) 

n(t) = Ii 7r2 t; (n + lY exp mfJL2 

8t2 
cc (-27r

2
(n + l?t2)} 

- m/3L2 t; exp mf3L2 . (2.20) 

The rapid convergence of the representation given 
by Eq. (2.20) enables an explicit examination of 
the decay pattern of the autocorrelation function 
(cf. Fig. 1, where net) is plotted as a function of 
the reduced variable T2 == 27r2t2/mf3L2

). 

III. DffiLECTRIC CONSTANT FOR FINITE SYSTEMS 

Correlation function relations for electrical con­
ductivities2

•
3

•
7 may be applied to finite systems 

providing that boundaries constraining the motion 
of particles be transparent to external applied fields. 
Assuming, now, that the particles of the assembly 
carry fixed electrical charge, the frequency.,.dependent 
dielectric constant, E(W), may be caloulated as 
follows. 

E(W) = 1 - (47rne2f3/m2w) rm x(w), (3.1) ----
7 E. W. Montroll, Lectures in Theoretical Physics (Boulder 

Lectures), Vol. III (Interscience Div., John Wiley & Sons, 
Inc., New York, 1961). 
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where n, e, and m are the density, charge, and mass, 
respectively, pertinent to the particles of the assem­
bly, and w is the frequency of the applied external 
field. [The Kubo relation for the dielectric constant 
usually appears as 

E(W) = 1 - 47rfJw -11m lim 1'" dt 
A-O 0 

X exp (iw - J-..)t (J(O)· J(t» 

= 1 - 47rfJw- 1 1m lim 1'" dt 
A-O 0 

X exp (iw - J-..)t L L (eie;/mim;)(p,(O)·p;(t», 
i. ; 

where J is the full current density due to all charge 
carriers of the assembly. Equation (3.2) is obtained 
by assuming that only one species of charged 
particle is the effective carrier; e.g., that a contribu­
tion due to the motion of positive ions may be 
neglected when compared with that due to electrons. 
It is to be noticed that the joint correlation terms 
(P;(O)·p;(t», i :;C j, do not appear in Eq. (3.2) 
since interactions between particles are ignored in 
our model. On the other hand, such terms could not 
be neglected for an interacting gas except, perhaps, 
if the density of charge carriers were very low.] 
x(w) is defined by 

x(w) = lim 1'" e(;",-A) 'net) dt. (3.2) 
A-O 0 

Thus, in virtue of Eq. (2.8) and Eq. (2.10), 

x(w) = ;fJ";. i'" ei
'" :t [tI(O] dt 

= - 4miw 1'" tei""I(t) dt. (3.3) 
7r{3L 0 

The latter equation implies 

1m x(w) = -!;: a~ i'" dt I(t) sin wt (3.4) 

so that, upon using the explicit formula for I(t) 
given by Eq. (2.19), one obtains 

2mw a {1 1'" . 1m x(w) = - 7r2{3 ow ;;; 0 dt sm (t) 

X t exp [-27r2(n + ttt/m{3w
2
L

2
]}. (3.5) 

n-O (n + 2) 

Let the infinite sum appearing in the above 
expression be approximated by a continuous integral: 

t exp [-27r2(n + we/m{3w2L2] 
n-O (n + tY 

'" k 1'" d exp [-27r
2
(x + tYt2

/m{3w
2
V] 

'" 0 x (x + t)2 , 

where k, a constant, is to be determined such that 
the sum has the correct value for wL ~ CD (i.e., 

± (n + tF2 = k 1'" dx/x2
). 

n-O 1 

Let us examine the latter expression when wL » l. 
First, it is to be noticed that 

lim x(w) 

= - m; a~ {~ ~", :~ i'" ~e-~' d~} = : ' (3.7) 

which is the correct limit for a gas of noninteracting 
particles. On the other hand, as an approximation 
for large but finite wL, 

1m x(w) ~ - mw ~ {! 1'" d~ 
{3 aw w 1 x 

X imfJL''''IBr'Z' ~e-~' d~} (3.8) 

mw a {I [ ( 7r
2 )1 -7 aw ;;; 1 - 2 m{3L2w2 

1
2(m fJ L'''''/S''')1 ]} x e-u' dy 

o 

~ (m/fJw){1 - (27r3)t(m{3w2L2r 11. (3.9) 

Comparing Eq. (3.9) with Eq. (3.7), it is seen that 
for large but finite wL, the measured dielectric con­
stant, [feW) - 1], will be diminished by a quantity 
which is inversely proportional to (mfJw2L2)1. In 
virtue of Eq. (3.9), it may be concluded that bound­
ary effects will be unimportant if m{3w2L 2 » 102

•
8 

[These conditions are certainly met a prop08 micro­
wave analysis of plasmas, even if the plasma is 
quite hot. (Assume L ~ 1 em, T ~ 30 ODOoK, 
w ~ 1010 cps. Since the electron mass ~ 10-21 gm, 
one has m{3w2L2 ~ 104 » 102

.) On the other hand, 

8 An investigation of xCw) for small CwL) appears in 
Appendix A, below. 
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analysis at radio frequency would be complicated 
by boundary effects. (Even if L ~ 10 cm and 
T ~ 300oK, because w ~ 107 cps one would have 
m{Jc,lL2 ~ 102

, so that the inequality would not 
be satisfied.)] 

IV. SCATTERING FUNCTIONS 

Let us next consider certain functions appearing 
in the scattering theory of slow neutrons.4.5 The 
same model as that employed in the calculation 
of the momentum autocorrelation function (cf. 
Sec. II) is used in the following analysis. 

First, consider the time-relaxed spatial density, 
G.(q; t I qo), defined as the conditional probability 
density for finding a particle in the neighborhood 
of phase point q, at time t, given that it was located 
at qo at time zero. This function can be obtained 
from 

if exp (-(1p~/2m) 
G.(qj t I qo) = dp dpo (27rm{J 1)1 

X f(P, q; t I Po, qo) 

- J d exp (-fJp~/2m) 
- Po (27rm{J-1)t 

X f(qj t I Po, qo), (4.1) 

where f(qj t I Po, qo) is the conditional probability 
density for finding a particle in the neighborhood 
of q, at time t, given that at t = 0 it was located 
at qo and had momentum Po. 

However, 

f(q; t I Po, qo) = o{q - q(t I Po, qo» (4.2) 

where q (t I Po, qo) is the position of a particle at 
time t, given that at t = 0 it was located at (qo, Po). 
It is to be recognized that the latter is given by 

for 2nmL _ qom < < (2n + l)mL _ qom 
t t Po - t t 

for (2n - l)mL _ qom < < 2nmL _ qom 
t t Po - t t 

Upon placing Eq. (4.3) into Eq. (4.1) and performing 
some simple coordinate transformations, it may be 
readily shown that 

G.(qj t I qo) 

= ta lLm/, dp g[p + 2nmL/t I qo]o(q - pt/m) 

+ t; l Lm
/
, 

dp g[p + (2n + l)mL/t I qo] 

X o(q + [pt/m - LJ), (4.4) 

where 

x {e-(PI2m)(Pho m/l)' + e-(P/2m)(p-Q.t/m)'}. (4.5) 

Let us now discuss the relationship of G. to the 
scattering theory of slow neutrons. The cross section 
for the scattering of low-energy neutrons may be 
expressed as 

d2
q 1 K' 2 

dO dw = 4'/1"/i Ko [acohScoh(k, w) 

+ a~ncSi".(k, w)], (4.6) 

where Scob(k, w) and Slnc(k, w) are referred to as 

n = ... , -2, -1,0,1,,2,3, ... (4.3) 

the coherent and incoherent scattering functions, 
respectively.9 We focus our attention on the second 
of these, which has the following definition.' 

(4.7) 

with 

x.(k, t) == ~ L (exp [-ik·qj(O)] exp [+ik·qj(OJh. , 
(4.8) 

In the approximation of classical mechanics, the 
joint expectation defined by Eq. (4.8) has the follow­
ing interpretation: 

x.(k, t) = J dqo P(qo) J dq e,k.(q.-ao1p(q I qo), (4.8') 

with P(q I qo) being the probability density for 
finding a particle in the neighborhood of q at time t, 
given that it was at qo at t = OJ P(qo) is the un­
conditioned probability density for finding the 
particle in the neighborhood of qo at t = O. 

Thus, in the classical approximation, and within 
v acoh and ainc are, respectively, the coherent and in­

coherent scattering lengths. Ko and K' are the wavenumbers 
of the neutron before and after scattering; k == Ko - KI. 
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the approximations of the model used for this cal­
culation, the incoherent scattering function can be 
expressed as 

Sin.(k, w) = L-1 1L dqoS(k, w I qo), (4.9) 

(4.10) 

and 

(4.11) 

The effects of boundaries on a measurement of 
Sin.(k, w) may now be estimated. From Eq. (4.5) 
and Eq. (4.11) one immediately obtains 

x(k, t I qo) 

'" 1Lm
,

t 

= L dp y(p + 2nmL/t I qo)ei('l't/m-•• 'k 
.. -0 0 

+ ~ l Lm
/

l 

dp y(p + [2n + l]mL/t I qo) 

Consequently, in virtue of Eq. (4.5), 

2 '" [l L 

(21C'm{3-1)lx(k, t I qo) = m
t 

L dp 
.. -1 0 

x {Cosh (2{3~:ZL [p + qo])e-(PmI2t"(l'+a". 

+ cosh (l2/3nmL/f][p - qo])e-(pm/2t')(V-.,)'} 

X e-·pm,,'L,j"e,(p-a,'kJ + 7 10L 
dp 

(4.12) 

(4.13) 

where, in order to obtain Eq. (4.13) it has been 
noticed that 

e- CA +B,' + e-(A-B" = 2e-A'e- B ' cosh 2AB. 

Again using the Fourier representation for the step 
function [cf. Eq. (2.6) and ff.], one obtains 

(27rm{3-1i'x(k, t I qo) 

= 4mt [f+oo dO sin (OL/2) eiBL/2 

t .. =1 _'" 1C'0 

X cosh (2{3nmLp/e) 

X cos ([k - O]qo)eH'l'-a.'k} ] 

+ 2m f+O> dO sin (fJL/2) eiBL/2 
t _'" 1C'fJ 

X cos ([k - fJ]qo). (4.14) 

However, let it be recalled that the theta function 
of the third kind is defined by 6 

00 

t?-a(u; iv) = 1 + 2 L e-"'''' cos (2'J1'11,U). (4.15) 
.. -1 

With this identification, Eq. (4.14) yields, simply, 

(21C'm{3-1)ix (k, t I qo) 

= 2m f+'" dfJ sin (fJL/2) eiBL/2 

t _00 1C'fJ 

Xi:'" dp{e-iB'l'e-Pm'l"/'t' cos ([k - fJ]qo) 

X t?-a(i{3Lmp/1C't'; 2i{3mL2/lre)ei(v- •• 'k}. (4.16) 

An advantage of making the identification given 
by Eq. (4.15) is that one can now make use of 
well-known expansions of the t?- functions in order 
to facilitate evaluation of asymptotic expressions for 
the scattering functions. Indeed, the Jacobi factoriza­
tion for t?-a is given by6 

'" 
t?-a(u; iv) = F II [1 + 2e- c ... - 1l ... 

.. -1 

X cos (27rU) + e- C4n
-

2
) ... ], (4.17) 

where 
'" 

F == II (1 - e-2 
..... ). 

Thus, in virtue of Eq. (4.17), Eq. (4.16), and 
Eq. (4.10), 

(21C'm{3-1i S(k, w I qo) 

= 2m f+'" dt e-
it 

f+oo dfJ sin fJ/2 eiB/2 

_00 t _00 1C'0 

X i:oo 
dP{e-iBV/Z'e-pmv'''''/2t' 

X cos ([k - fJ/L]qo)eiCV- •• )k 

CD 

X II [1 - exp (-4ii./3mL2w2 Ie)] 
ii-I 

'" 
X II (1 + 2 exp (-[4n - 2]{3mL2w2/t2

) 

X cosh (2/3mLw2p/t2) 

+ exp (-[8n - 4]{3mL2w2/t2)]}. (4.18) 
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However, for {3mL2w2 » 1, 

(27rm{J-l)iS(k, w I go) 

~ 2m f+O> dt e-
il f+= dO sin 8/2 e· 9/ 2 

_'" t _0> 7rO 

x cos ([k - 8/L]qo)e
HfJ

- •• 
,k 

X [1 + 2 exp (-2{3mLV/e) 

X cosh (2{3mLw2p / e)J} , (4.19) 

the latter approximation being valid due to the fact 
that for large t, where the neglected terms of the 
product factorization would be important, the de­
creasing multiplicative factor, e-'!/t, becomes dom­
inantly small. 

Performing the go integration which is necessary 
in order to obtain S(k, w) from S(k, w I go) [cf. 
Eq. (4.9)], Eq. (4.19) yields 

(27rm{3-1)Sin.(k, w) = 2m i:O> dt e-i'/t i:'" dO 

{
Sin (8/2) .9/2 1 [(1 - e-· 9

) (1 - e-H2kL-9l)] 
X 7r8 e 2i 8 + (2kL - 8) 

X i:O> dp e-· 9(PIL-k l e-mp",p'/2"} 

+ 2m 1+0> dt e-
il 

1+0> dO {Sin (0/2) ei9/2.~ 
_00 t _00 7r8 2~ 

[
(1 - e-· 9) (1 - e-H2kL-9l)] 

X 8 + (2kL - 8) 

X L:oo 

dp e-i9(pIL-kl[e-mP""(p-2Ll'/2" 

+ e-mp
"'(V+ 2Ll'/2P]}. (4.20) 

Finally, as shown in Appendix B, careful analysis 
of the latter (for kL » 1) yields 

S. (k ) = (27rm{3)i -mp.,'/2k· 
.no ,w k2 e 

X [1 + (~~I + 0(kL2 ; ki (m{3:2 L2)l) + ... ] ' 
(4.21) 

with 
If(k) I == 4 Icos3 (kL) sin (kL)1 :::; 4. (4.22) 

The leading term in Eq. (4.21) is that appropriate 
to an unconstrained one-dimensional noninteracting 
gas, whereas the term proportional to (kL) -1 provides 
the first-order correction. 

In scattering experiments, detectable energy 
changes are usually of the order hw > 0.001 eV. 
Corresponding to such an energy change,5 k- 1 = 

.287 X lO-s/(E.v)i, :s 10-7 cm. Thus, for realistic 
experimental conditions, boundary effects are un­
likely to be of any important concern. 
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APPENDIX A: 
DmLECTRIC CONSTANT FOR SMALL ((,)L) 

Let us briefly investigate x(w) for values of 
((3mw2

L2) f'"V 0(1). Starting with Eq. (3.5), integration 
over t provides 

mw { '" w
2 

[ m{JL 
2 J2 

1m x(w) = 7r2{3 f.;"2 271"\n + !)2 

11 [m(3L
2
w

2 
2 J 

X 0 exp 871"2(n + !? (1 - y) dy 

'" mfJU } - L 2 2· 
"_0271" (n + !) (AI) 

However, for small Lw, the integrals appearing in 
the above equation may be approximated by unity. 
In this case, 

1m x(w) 

~ (m/471"2{3w){m{3LV}{i(m{3L2w2
) - I}. (A2) 

Hence, in the rf range, x(w) would have a sign 
change as a function of frequency. 

APPENDIX B: ASYMPTOTIC ANALYSIS 

The expression given by Eq. (4.20) may be 
written as 

1
+0> 

X d -i9(fJIL-kl -mp"',,,'/2t' pe e , 
-0> 

(B3) 
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and 

1
+«> 

X _'" dpe-i8Cp/L-k) 

x [e- cPm",'/2")(p+2L)' 

+ e- (fJmw~/2t'J) (P-2L)li] 

(27rmfJ- 1)!S4 == 2m L:'" dt e-;' 

1+'" [sin 012]ei9/ 2 [1 - e-iC2kL-9l] 
X _'" dO 2i7r0(2kL _ 0) 

X J+«> dpe-i8(p/L-k) [e-(P"'''''/2t') (p+2Ll' 

+00 

(B4) 

(B5) 

Let us analyze each one of these terms separately. 
Noticing that [6'8(2(1 - e- iB)J/2i = sin (0/2), 

the first contribution may be written as 

( 
fJ )t{ 1+00 

e-
it 1+a> sin

a 
(0/2} 8 1 = -2 - 2m dt -t- do ,,2 

7rm _00 _00 7rv 

X f _1_ (! ~)Z" 1+'" dp e-mP"'''''/21' cos (Pk)} 
.. ~o (2n)! L ak _<0 

(B6) 
= 1+<0 dJ2 sin

a 
(0/2) t _1 (! ~)2n} 

-0> ~ 7r02 
n=O (2n) I L ak 

X {(27r
k
r;;fJYe- mpw '(2k'} 

= (27rmfJ/k2)!e-mP""J2k'[1 _ o(1Ik2L2) + '" j. 
(B6') 

Similarly, as a consequence of the coordinate 
transformation c/> == 0 - kL, one obtains (for 
IkLI» 1) 

, (fJ)~ 1+ 00 

2e-
i

" 82 = - dcf>--
27rm _00 7r 

X sin (!~ - !kL) sin (t~ + tkL) (27rmL) e-m/3""L'(2". 
(~ - kL)(ip + kL) lip I 

(B7) 

"-' 2 (kL) sin (kL) (27rmfJ)! -m/3",'/2k' 
"-' cos lkL I k" e 

X 1+ 00 

d sin ([ip - Ikl L]/2) 
_0> ~ 7r(~ - Ikl L) 

+ 2 sin
2 

(kLI2) ( 27rmfJ)! 
IkLI k" 

X d~ _e_ e-",/3""L'/2,,-1
+00 -i" 

-0> 7r lipl 

L:'" dO sin
2 

;!/2) cos 20 = 0, 

L:'" dO Bina ~0/2) sin 20 = O . 

(B7') 

(B8) 

(BS') 

(B9) 

Hence, Sa is at most only of order l/k2L~ of the 
strength of 8 I' 

Finally, from Eq. (B5), 

8
4 

= J+'" dJ2e-i8 sin ([0 - kLJ/2) sin ([0 + kL]/2) 
_'" 1, 7r (0 - kL)(O + kL) 

X [2 cos 20][(27rmi3)!L/lolJe-mfl""L'/29'} (BIO) 

cos 2kL . 
~ 2 IkLI 8m (kL) cos (kL) 

X 1+:;0 sin (J (27rr;;fJ)te- mll""/2k' 

_0> 7r0 k 

+ O(k~ (mfJ~2L2)t) 
~ 2[ CO~~1L cos (kL) sin (kL) ] 

X {(27rk~i3re-mllw'/2k} (BIO') 

Thus, by virtue of Eqs: (BlO), (B7'), and (B6,) , 
Eq. (Bl) implies Eq. (4.21) of the main text. 

10 H. B. Dwight, Tables of Integrals and Other Mathematical 
Data (The Macmillan Company, New York, 1961), 4th ed. 
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The correlations between positions of particles in classical equilibrium statistical mechanics are 
usually expressed by correlation functions. It can be seen that if the correlation functions of a system 
are known, its configurational entropy per unit volume is already determined (independently of the 
interaction potential or other thermodynamical parameters). In this paper we consider all sequences 
of functions of an increasing number of variables (these functions are candidates for correlation 
functions) for which an entropy per unit volume may be defined. These sequences are called corre­
lation functionals and are investigated in detail. They prove useful to the study of the limit of an 
infinite system in statistical mechanics (thermodynamic limit). Furthermore they allow the segre­
gation of certain thermodynamic systems into phases to be made evident. 

INTRODUCTION 

STRIPPED of its unessential features, the main 
problem of equilibrium statistical mechanics is 

typically the following. Given a large box A with 
volume V and a large number n of particles enclosed 
in the box and interacting through a two-body 
potential {P, what is the macroscopic aspect of the 
system of particles? We assume that the density d 
and the energy per unit volume e are given, then 
(forgetting kinetic energy) every admissible con­
figuration (Xl, ... , xn) of the particles in the box 
satisfies the conditions 

n 

V-In = V-I L 1 ~ d, V-I L cI>(Xj - Xi) ~e. (0.1) 
i-1 i<i 

We ignore configurations with "exceptional" be­
havior, sets of configurations being weighted with 
Lebesgue measure. According to the usual ideas 
about ergodicity, and from the existence of thermo­
dynamics, one is led to think that the problem 
described above is reasonably well set (for reasonable 
cI> ). 

In the greater part of this paper, the configurations 
satisfying conditions of the type (0.1) are studied 
without further reference to physics. In the last two 
sections, applications to equilibrium statistical 
mechanics are indicated, without attempt to gener­
ality. In Secs. 1 to 3 the limit of an infinite volume V 
is investigated, using methods analogous to those 
employed by the authorl and Fisher2 to prove the 
existence of the thermodynamic limit, generalizing 
the classical result of Lee and Yang. 3 In Secs. 4 to 6 

the notion of correlation functionals is defined and 
studied. In Secs. 7 to 9, correlation functionals are 
represented in terms of expectation values in a 
Hilbert space, in a manner which is reminiscent of 
quantum field theory. A notion of analytic correla­
tion functional is introduced. In Sec. 10, the pre­
ceding theory is applied to the study of the thermo­
dynamic limit of the grand canonical correlation 
functions. In Sec. 11, a (unique) decomposition of 
analytic correlation functionals, established in Sec. 
9, is shown to correspond to a physical splitting of 
large systems into phases. 

Throughout the paper we have, in a somewhat 
pedantic way, distinguished between a real Lebesgue­
measurable function 1 and its class A. It is assumed 
that the irritated reader will mentally omit the tilde. 
Furthermore systematic use has been made of sym­
bols like N* [to represent the set of positive or 
rather, as one should say, strictly positive (>0) 
integers]. The text has been written so that it is pos­
sible to go through Sec. 1, Sec. 7 and only the itali­
cized part (definitions, propositions, theorems) of the 
other sections and to get, in this way, rapidly an idea 
of the results obtained in the paper. This also gives 
quick access to the motivation which is contained in 
the last two sections. 

The main results of physical interest may however 
already be stated now, although in an imprecise 
manner. A correlation functional p is defined as a 
sequence of functions of an increasing number of 
variables: p = (Ph P2(~I)' P3(~1' ~2)' ... ). In such a 
sequence the function p,,+l(h, •.. ~,,) may be under­
stood as the probability density of finding p + 1 

* Permanent address: Institut des Hautes Etudes Scien- different particles at positions x, x + ~l' •• " x + ~" 
tifiques, Bures-sur-Yvette (S.-et-O.), France. 

1 D. Ruelle, Helv. Phys. Acta 36, 183 (1963) and Lecture (P,,+l is thus a candidate for a correlation function in 
notes of the Theoretical Physics Institute, University of statistical mechanics). To each P we will further 
Colorado, Boulder, Summer 1963. 

2 M. Fischer, Arch. Rat!. Mech. Anal. (to be published). attach a real number s(p), its entropy per unit 
3 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). volume. Consider a sequence (Ai) of boxes of volumes 
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v j tending to infinity and let 'U j be the volume of the 
set of configurations of points in V j , the correlations 
of which are given (in the limit) by p. The entropy 
per unit volume of p is defined as 

s(p) = lim ViI log 'U j • (0.2) 
i-co 

The existence of the limit (0.2) is not trivial and is a 
central result of the paper. 

We show that, for potentials of a certain type at 
least (hard-core potentials), if we compute the 
grand canonical correlation functions at any given 
temperature and chemical potential for a sequence 
of boxes tending to infinity, we can choose a sub­
sequence of the sequence of boxes such that the 
correlation functions have limits, which form a 
correlation functional p. Furthermore s(p) is the 
physical entropy per unit volume. This result justifies 
the names given to p and s(p). The idea here is the 
following. Suppose that some correlations are fixed 
for a large system of points [by such conditions as 
(0.1)]. If a new correlation condition is imposed it 
mayor may not decrease the entropy per unit 
volume of the system. If it does, that new condition 
is inadequate because it leads to a set of configura­
tions which has negligible probability; if it doesn't, 
we proceed by imposing new correlation conditions. 
In this way, one can find which correlation function­
als, compatible with the original correlation condi­
tions, have the same entropy per unit volume, and 
may therefore describe the system. 

For a large class of correlation functionals there 
exists a natural and unique decomposition into a 
sum (or integral) of similar objects. This is true in 
particular for analytic correlation functionals (which 
justifies their introduction). This decomposition is 
seen to correspond to a decomposition of a physical 
system into phases, defined as large, macroscopically 
homogeneous, regions. A short heuristic discussion 
of how phase transitions may occur is given at the 
end of Sec. 11. 

1. NOTATIONS AND BASIC INEQUALITIES 

Let R be the field of real numbers and Z the ring 
of integers. It will be convenient in what follows 
to use systematically the notations 

R+ = {x : x E R, x 2: OJ, 

R~ = {x : x E R, x > OJ, 

N = In : n E Z, n 2: 0 L 
N* = In : nEZ, n > OJ. 

Let R' be the p-dimensional numerical space, 

p E N*, with the usual topology. An element x of 
R' is a sequence (X

i
)l:5iSP of real numbers and we 

write Xo = Xl + X2 if x~ = x; + x; for i = 1,2, ... , P. 

A translation T x ., Xo E R' is the mapping of R' onto 
itself defined by 

(1.1) 

It will be understood in what follows that the meas­
ure of a subset of R' is its Lebesgue measure (vol­
ume); measurability will mean Lebesgue measura­
bility. 

We will call ~P+l' p E N*, the set of all measurable 
functions defined on W', with values in R U {+ 00 I, 
and vanishing outside of a bounded set. We call 
(t,,+1 the set of classes of such functions (two functions 
are said to belong to the same class if they differ 
only on a set of measure zero). We will denote by 
(~l' '" , ~,,), with ~l' ... , ~p E R', a point of R'" 
and by Ap+ 1 (~l' '" , ~p) the value of A,,+l at thi~ 
point. We also let ~1 and (tl be identical with R 
ant! say that Al E ~l belongs to the class of Al E (tl 

if AI = Al E R. Let A = (A p + 1 )"EN be a sequence 
such that, for each pEN, A"+1 E ~P+1 and only a 
finite number of terms in the sequence do not vanish. 
We call ~ the set of all such sequences A. We say 
that a sequence A = (A,,+I)pEN is the class of an 
element A = (Ap + 1)pEN of ~ if, for each pEN 
A p + 1 E (tp+l is the class of Ap + l • We call (t the set 
of all such sequences A. 

Let (R be the topological sum/ for pEN, of the 
spaces R"'. 'Ve make use on (R of the measure which 
reduces on R'" to the Lebesgue measure for p E N* 
and to 1 for p = 0 (RO is reduced to a point and the 
measure of the set consisting of this point only is 1). 
Unless otherwise stated, measurability and integ­
rabilityon (R will always be with respect to the above 
measure. ~ will be identified with the set of all 
measurable functions on (R with values in R V {+ 00 l 
and vanishing outside of a compact (of (R). (j, will be 
identified with the set of classes of such functions. 
~P+l and (tv+l will be canonically identified with 
subsets of ~ and (t respectively. The addition and 
the multiplication by an element of R~ is defined 
in ~ and in (t. If A E ~ and A does not take the 
value + ro the product of A by any real number is 
defined, the product of the class A E (j, of A by any 
real number is then also ~efined. If At, A2 E m: and, 
for all ~ E (R, either AI(~) = A2m = + 00 or 
AIm - A2m E R+ V {+ro} we write Al 2: A2

, 

we also write A l 2: A 2 if AI
, A 2 E (j, are the classes 

of Al and A2 respectively. In what follows, if A E m: 
4 See for instance N. Bourbaki, Topologie Generale, F ascicule 

de Resultais (Hermann & Cie, Paris, 1953). 
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has been introduced, we will usually, and without 
further comment, call its class A. Similarly, if 
A E a has been introduced, we will note A any 
element in the class A. If A E a is integrable, its 
integral will be noted f A (~)d~. 

Let X = (x;)g;s .. be a sequence of points in R P
, 

n E N*, and let A"+l E ~"+l' P N*. We define 
A.,,+l[X] = 0 for n S p 

A.,,+l[X] = I: A .. +1(x" - Xi., ••• 'X'p - Xi.) 

for n > p, (1.2) 

where the summation extends over the n!j (n -p -1) ! 
sequences (io, i l , ••• , i,,) of p + 1 different integers i, 
with 1 SiS n. If A = (A"+1)"EN E ~ we write 
also 

Let now A be a measurable subset of finite measure 
V of R', A = (A ~)lS~SQ a sequence of elements of a, 
J = (J")g~5q a sequence of open intervals of R, 
q E N. The points X = (Xl, ..• , X .. ) of A", n E N*, 
satisfying the conditions n-IA~[X] E J" for (j = 
1, ... ,qformasetofmeasuren!'O(A,n;A,J) S V". 
'O(A, n; A, J) is independent of the choice of the 1" 
in the classes A ~ and invariant under translations 
of A. Furthermore, if Al C A2 , 

'O(Alt n; A, J) S 'O(A2' nj A, J). (1.4) 

Let .4. ~ = (A;+1)"EEN for (j = 1, ... , q. There exists 
a compact MeR" such that, for each p E N*, 
(j = 1, ... , q, A;+l reduces to the class of the zero 
function in the complement of M1>. We may choose 
M to be symmetric (M = - M) and convex. Defining 
then A' as the subset of A formed by the points X 

such that X + ! MeA, we write 

'O/(A, n; A, 1) = '0 (A' , n; A, 1). 

If Al and A2 are disjoint we have 

'Or(Al V A2 , nl + n2; A, J) 

(1.5) 

~ "O'(AII n 1 ; A, J)"O'(A2 , n2; A, 1). (1.6) 

It will be convenient in what follows to choose for 
M a cube 

M = {x: -K S Xi S K for i = 1, ... ,p} (1.7) 

with K E R~. 

2. LIMIT OF AI'{ INFINITE VOLUME 

We define sets A'I.(m) C R' by 

A'I.(m) = {x: 0 S Xi < mil. for i = 1,2, ... ,vI, 
(2.1) 

where A E R~, m = (m')l';;;S' and m' E N* for 
i = 1, 2, ... , P. Let also KA = A ACl, 1, ... , 1). 
If n E N* and l > K we have then 

'O'(KI, n; A, 1) = 'O(Kl
-., n; A, 1). (2.2) 

Let len) be the lower bound of the numbers l > K 

such that 'O(Kl-., n; A, J) > O. If A > len) the 
function F defined on (N*), by 

F(m) = log '0' (A}.(m), n IT mi, A, J) .-1 
satisfies the conditions of Lemma Al (see Appendix) 
because of (1.6) and we may write 

n-1 lim (IT mi )-l log 'O'(AJ.(m), n IT m'; A, J) 
l-l s-l 

= t~(A 1 J) < 1 + log X' In. (2.3) 

It follows from (1.4) that t~ is an increasing5 func­
tion of X. Furthermore if len) < xt < A", A)..'+A" (m) 
contains AX" (m) and 2" - 1 mutually disjoint trans­
lates of AA' (m), which are disjoint from AX" (m). By 
repeated application of (1.6) and (1.4) this fact yields 

t!(A'+A"l > (1 - 2-')t~' + 2-·t~". (2.4) 

According to Lemma A2 (see Appendix), the above 
two properties imply that t~ is a continuous function 
of X for A > l(n). 

Definition 1: If a = (a'hSi5" a' E R! for 
i = 1, ... , P, we define a set A(a) C R' by 

A(a) = {x : 0 S Xi < a' for i = 1, ... ,p} (2.5) 

and caU V(a) = II~-l ai its measure. 

Let (aj)iEN be a sequence of elements of (R~)" 
such that 

lim (min aD = + 0';) • 

i ..... O) 1:$i.$, 

Let also (k;) ;EN be a sequence of elements of N* such 
that 

lim nil A(aj) = AV E R!. 
;_tR 

We show that if A > len), 

lim n-lki l log "O'(A(aj), nk;; A, D = t~. (2.6) 
i-+cn 

Let len) < A' < X < XN. We write6 

m~2 = E(a~/X'), ... , m:' = E(a~/X') 

6 We call a real function J of a real variable increasing 
if X, < X" implies feX') ~ J(X") whenever J(X') and J(X") 
are defined. 

6 We note E(x) the integer part of x E R : E(x) E N 
and 0 ~ x - E(x) < 1. 
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and M~ = II;-2 mi'. If k; = milMi + ri, mil EN, 
o ::; ri < Mi we have 

m,l").., k. (")..') , 
lim -' 1- = lim -'- (")..')' = - < 1; (2.7) 
;_00 a; ;_00 Yea;) ").. 

hence for j big enough, mil")..' < a~ - A. The set 
A(a;) contains then Ah

' (mi) and ri mutually disjoint 
translates of Kh disjoint from Ah

' (mi), and we have 

'O'(A(a;) , nk;; A, J);:::: 'O'(Ah'(mD,n tr mi';A, J) 
,-1 

X ['O'(K\ n; A, J)f1'. (2.8) 

When j --t co, this gives 

There exists thus l E R! and MEN such that 
for r = 0, 1, ... , n, 

'O'(K1
, nM + r; A, J) > O. (2.14) 

We write b; = (a} + K, a; + K, •.. , ai + K), 
c = (l, l, ... , l) E (R!r. Let (n;);EN be a sequence 
of elements of N* such that 

lim niIV(a;) = n-I").. •. 
i-co 

We write n; = nk; + r;, k; EN, 0 ::; r; < n. For j 
big enough we have n; > nM and a; > l + K, then 

'O(A(a;), n;; A, J)'O'(K I
, n(M + 1) - r;; A, J) 

lim inf n-Iki l log 'O'(A(a;), nk;; A, J) ;:::: t~'. (2.9) ::; 'O'(A(b; + c), n(k; + M + 1); A, J) (2.15) 

Similarly we write mi,2 = E(aU")..") + 1, , 
mi" = E(ai/")..") + 1 and Mj' = II~-2 mj". If 
k; = mj'IMi' ri', mi,l E N*, 0 ::; ri' < Mi', 
we have 

lim '!!!:L..p- = lim --;- (")..")' = ~ > 1, (2.10) "I,,, k (''')' 
;-00 a; ;_'" Yea;) ").. 

hence for j big enough, mi'I").." > a~ + A. The set 
Ah

" (m?) contains then A(b;) and ri' mutually dis­
joint translates of Kh disjoint from A(b;) and we 
have 

'O'(Ah
" (mi'), n II mi"; A, J) 

,-1 

;:::: 'O'(A(a;), nk;; A, J)['O'(K\ n; A, J)f1". (2.11) 

When j --t co this gives 

t~" ;:::: lim sup n-1ki l log 'O'(A(a;), nk;; A, J). (2.12) 

Since A' and A" may be chosen arbitrarily close to A, 
and t~ is continuous in A, (2.6) follows from (2.9) 
and (2.12). 

Let J' = (J,U)ISuSa be a sequence of open intervals 
of R such that the closure of J'u belongs to J' 
for u = 1, ... , q. Since 'O(Kh-., n; A, J) > 0, if 
").. > len), J' may be chosen such that '0 (Kh-", n; A, J') 
> O. Let r E N*, 0 < r ::; n. The cube Kl contains 
A\m) and r mutually disjoint translates K], ... ,Kr 
of Kh disjoint from Ah(m) provided 

l ;:::: (n + max m')")... 

Let M = II~-I m'. If X = (XI,' . " XnM) E [(A\m»'r
M 

and XnM+I E (K I)" ... , XnM+r E (Kr)', we write 
X' = (Xl' ... , XnM+r) E [(KI)'rM+r. We have 
AU[X'] = AU[X] for u = 1, ... , q, hence for M big 
enough, 

'O'(K" nM + 1'; A, J) 
;:::: 'O'(Kh(m), nM; A, J')(").. - J.I)". (2.13) 

'O'(A(b; - c), n(k; - M); A, J)'O'(K1
, nM + r;; A, J) 

::; 'O(A(a;), n;; A, J). 
From (2.15), (2.16), and (2.6) we obtain 

lim nil log 'O(A(a;), n;; A, J) = t~. 

(2.16) 

(2.17) 

Letnl,n2E N*and ")..1, A2 E R!. Ifn~I")..;=n;I")..;=v 
and Al > l(nl), A2 > l(n2 ), it follows from (2.17) 
that t~: (A, J) = t~: (A, J) = t(v, A, J). Considered 
as a function of v, t is defined only if we assume, as 
we did, that 'O'(K\ n; A, J) > 0 for some n E N* 
and some A E R!. In this case it is defined for 
v E R!, v > Va, where Va = infnEN* n-l[l(n)]' E R+. 

Proposition 1: Given sequences A = (A U)ISusa 
and J = (J')ISuSa the following two possibilities exist: 

(1) For all a E (R!r and n E N*, 

'O(A(a), n; A, J) = 0; 

(2) there exists Va E R+ and a real function 
t(v; A, J) defined for V > Va, satisfying the following 
requirements: 

For all a E (R!f and n E N* such that 
n-IV(a) ::; Va, 'O'(A(a), n; A, J) = 0 
For all a E (R!Y and n E N* such that 'O'(A(a), 
n; A, J) > 0, 

n- I log 'O'(A(a), n; A, J) ::; t(n-IV(a); A, J). (2.18) 

If (a;);EN is a sequence of elements of (R!r such that 
lim;_", (minIs.s. aD = + co and (n;);EN a sequence 
of elements of N* such that lim;_", nil V (a;) = V E R! 
and V > Va, 

lim nil log 'O'(A(a;), n;; A, J) = t(v; A, J) 
i-oo (2.19) 
lim nil log 'O(A(a;) , n;; A, J) = t(v; A, J). 

The function t(v; A, J) is continuous, increasing, and 
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satisfies the inequality 

t(v; A, J) :$ 1 + log v. (2.20) 

Instead of the sequence (A(a;»;EN one could use a 
more general sequence (A;)jEN of sets Ai E R V with 
measure Vi such that limi~"" nilVj = v E R!, 
v > Vo. Let us only mention that if every Ai is con­
vex and if, for all L E R!, Ai contains a translate 
of KL for j big enough, (2.19) still holds with A(a;) 
replaced by Ai' 

3. DEFINITION AND PROPERTmS OF THE 
FUNCTION seA, E) 

If JI = (J~)I$a$.' J2 = (J;h$a$., q E N are 
sequences of open intervals of R, JI' and J2 may be 
identified with open sets of R". We define then 
Jl + J2 as the set of all sums of an element of JI 
and an element of J2, the product )"J, ).. E R, is 
defined as the set of all products of an element of J 
by A. 

If a, aI, az E (Rt)" are such that A(a) is the union 
of A(al) and of a translate of A(a2) disjoint from 
A(al) and if nt, nz E N*, we have 

-o'(A(a), nt + n2; A, (nll1 + n212)f(nl + n2» 

2. 'U'(A(al), nl; A, JI)'O'(A(a2), n2; A, J2); (3.1) 

hence, if VI, V2 E R!, Proposition 1 shows that 

t(avI + (1 - a)v;?; A, aJI + (1 - a)J~) 

2. at(vt;A, 11) + (1 - a)t(v2 ;A, 12), (3.2) 

provided t(VI; A, Jt) and t(V2; A, J2) are defined and 
o < a < 1. If l' C J and t(v; A, 1') is defined we have 

t(v; A, 1') :::; lev; A, J). (3.3) 

From Proposition 1 it follows that if t(v; A, J) is 
defined and J = Vi J / is a finite union of sets J;, 

t(v; A, 1) = max lev; A, JI); (3.4) 
i 

the maximum being taken over the indices j for 
which t(v; A, Ji) is defined. It follows also that for 
any E E R! one can find l' with compact closure 1~ 
such that J~ C J and 

'O/(A, n; A, J') 2. 'O'(A, n; A, J) - E. (3.5) 

We call Q(v) the subset of R" on which t(v; A, F) is 
defined. 

It follows from (3.2) that 

t(£'tV1 + (1 - a)v2; A, aF1 + (1 - a)F2) 

2. at(vt; A, F1) + (1 - a)t(v2; A, F2) (3.7) 

provided t(vt ; A, FI} and t(V2; AI, F2 ) are defined. 
If t(v; A, J) = t is defined, for any E E R! one may 

choose l' relatively compact in J such that 
t(v; A, 1') = t' is defined and t' 2. t - E. There exists 
by (4) a decreasing sequence (J/)/EN of subsets of Jf 
converging towards a point F' of the closure of Jf 
and such that t(v; A, Ji) = tf for all j. By (3.3) and 
(3.6), t(v; A, F') is then defined and 2.t - E. This 
shows that t(v; A, J) is defined if and only if J is 
not disjoint from Q(v). Furthermore, if t(v; A, J) is 
defined, for any E E R! there exists F' E J (\ Q(v) 
such that 

t(v; A, J) - E :::; t(v; A, F/); (3.8) 

hence 

t(v; A, J):$ sup t(v; A, F). (3.9) 
FEJ{\Q(.) 

On the other hand, by (3.6) 

t(v; A, J) 2. sup lev; A, F). (3.10) 
FEJ{\Q(.) 

Proposition 2: The function t(v; A, F) of v and F is 
defined and concave1 on a convex subset of R! X Rq

• 

t(v; A, J) is defined if and only if 1 (\ Q(v) ~ q" and 
then 

t(v; A, J) = sup t(v; A, F). (3.11) 
FEJ{\Q(.) 

Let again A be a measurable subset of finite 
measure V of R" and I = (I")l$fT$a a sequence of 
open intervals of R, q EN. For each n E N* the 
measure of the subset of An formed by all X such 
that V-1;r"[X) E 1" for IT = 1, .,. , q is -o(A, n; 
A, V InI). The following series converge 

<U.'(A; A, I) = L 'O/(A., n; A, Vn I) < eV
, 

"EN· (3.12) 

'U{A; A, I) = L 'O(A., n; A, V I) < eV
• 

nEN* 11. 

Hence t(v; A, J) is, if it is defined, the supermum of Consider now the functions of d E R! defined by 
all defined t(v; A, 1') for J' relatively compact in J. 

Definition 2. Let F = (r)l$fT$. be a sequence of real 
numbers (i.e., F E Rq). If t(v; A, J) is defined for all 
J :3 F and inf t(v; a, J) exists in R we define 

t(v; A, F) = inf t(v; A, J). (3.6) 
J3F 

sed; A, I) 

= dt(d- I
; A, d-II) :$ d(l - log d) :$ 1, (3.13) 

7 Let Q be a convex set (in a real vector space). We call 
a real function i, defined on Q, concave if for any a such that 
o < a < 1 and any i" i. E Q the following inequality holds 

f(ail + (1 - a) i2) ~ aj(il) + (1 - a)f (r2)' 
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sCd; A, E) 

= dt(d- I; A, d-IE) S d(l - log d) s 1. (3.14) 

Let dll d2 E R!, 11, 12 be sequences of open intervals 
of Rand 0 < a < 1. If we replace in (3.2) a by 
[ad! + (1 - a)dzf1adl and put Vl = d~\ V2 = d;\ 
Jl = d;IIl' J2 = d;lI2 we obtain 

s(adl + (1 - a)d2 ; A, all + (1 - a)I2) 

~ aB(dl ; A, II) + (1 - a)B(d2 ; A, 12) (3.15) 

provided s(dl ; A, II) and s(d2 ; A, 12 ) are defined. 
Similarly, using (3.7) we obtain 

s(adl + (1 - a)d2 ; A, aEI + (1 - a)E2) 

~ aB(dli A, E I) + (1 - a)s(d2 i A, E2), (3.16) 

provided s(dl ; A, El) and s(d2 ; A, E2 ) are defined. In 
particular sed; A, I) is a concave function of d on its 
interval of definition Ie R!. It follows from Propo­
sition 2 that I either is empty or has a nonempty 
interior. 

By Proposition 1, if I is empty 'U'(A(a); A, I) = 0 
for any a E (R!Y. If I is not empty we define 

seA, I) = sup sed; A, I). (3.17) 
dEl 

To any Vo E R!, s E R, we can find two intervals 
[' and If! of R such that I = I' V]", ]' is bounded 
and, for any V ~ Yo, 

V" 2: -, s exp (Vs). (3.18) 
nEVI" n. 

Taking s = seA, I) we have then 

V(ar l log 'll'(A(a); A, 1) 

= V(ar l log E 'O'(A(a), n; A, V I) 
nEVI n 

where the supremum is taken over d in the interval of 
definition of sCd; A, E). Let P be the convex subset of 
Ra where the concave function 'fiCA, E) of E is defined. 
It follows from Proposition 2 that seA, I) is defined if 
and only if I and P are not disjoint and in this case 

seA, I) = sup 'fiCA, E). (3.23) 
EElni' 

Conversely if seA, I) is defined for every I :3 E, 
and inf s(A, I) exists in R, we define 

seA, E) = inf seA, I). (3.24) 
13E 

Let P be the subset of Ra where seA, E) is defined. 
It is clear that P J P and seA, E) ~ 'fiCA, E). Fur­
thermore seA, E) is concave on the convex set P 
and, for every So E R, the set {E : seA, E) ~ so} is 
closed in Ra [in particular, seA, E) is upper semi­
continuous on Pl. It follows also from (3.23) and 
(3.24) that seA, I) is defined if and only if I and P 
are not disjoint and in this case 

seA, I) = sup seA, E). (3.25) 
EEJ("1P 

Notice finally that if a E (R~r and b = 
(al + K, .,. , a' + K) we have 

. _,( . V(a») 'll(A(a), A, 1) - 'U A(b) , A, V(b) I . 

If seA, I) is defined, for any E E R! one can find I' 
such that the closure of I is contained in I' and 
seA, 1') - seA, I) < E. Using (3.21) we have thus 
for minlsis.a' sufficiently large 

'll'(A(b); A, I') 

> 'll(A(a); A, 1) > 'll'(A(a); A, 1) (3.26) 

seA, I) + 2e 

> V(ar l log 'll(A(a); A, 1) > seA, I) - E. (3.27) S V(a)-l log 2: 'O'(A(a), n; A, V I) 
nEV!' n 

+ exp [V(a)s(A, I)] 

V(a)-l log 'll'(A(a); A, 1) 

Theorem 1: Given sequences A = (A ")lSaSQ and 
(3.19) I = (I")lSVSq there exists a real function seA, E) 

defined when E belongs to a convex set P of Ra and 
satisfying the following requirements: 

~ V(ar l log [max 'U'(A, n; A, V I)] (3.20) (1) If I n P = cP, tev; A, vI) is defined for no 
,,10 VI n v E R! and 'U'(A(a); A, I) = 0 for all a E (R!Y. 

so that, given E E R!, one can find l E R! such that (2) If I n P ~ cP the limits when 

min a' seA, I) + E > V(ar 1 log 'll'(A(a); A, 1) > seA, I) - E gi$> 

provided minlS'~. a' > l. 
(3.21) tends to infinity of V(a)-l log 'll(A(a); A, I) and 

If sed; A, E) is defined for some d E R~ and E E R4 
we define 

8(A, E) = sup sed; A, E), (3.22) 

V(a)-l log 'll'(A(a); A, I) exist in R and coincide, 
defining a number 

seA, I) = sup seA, E). (3.28) 
EElnP 
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In this case tev; A, vI) is defined for some v and 

seA, I) = sup v-lt(v; A, vI). (3.29) . 
seA, E) is defined if and only if seA, I) is defined for 
all I :3 E and inf seA, I) exists in R, then 

seA, E) = inf seA, I) (3.30) 
13E 

seA, E) is concave, bounded by 1 on P, and tor every 
So E R the set {E : seA, E) ~ sol is closed in Ra

• 

It may be noticed that if the set P is not empty 
it contains the origin of Ra and seA, 0) ~ O. For the 
purpose of later reference we note the following 
result 

Corollary. Let A = (At,··· , A a), A' = 
(AI '" Aa Aa+

1
) and I = (rt .. , 1") We as-, , , , , . 

sume that .1a+l may take the value + ro only at points 
of <R for which some .1~, 1 ~ (1 ~ q, takes the value 
+ ro. Then s(A', I X R) is defined if and only if 
s (A, I) is defined, and in the latter case 

s(A', I X R) = seA, I). (3.31) 

4. CORRELATION DATA 

Definition 3: We call correlation data any couple 
«(I>, p) of a part (I> of (t and of a function p from (I> to R. 
We say that the correlation data «(I>, p) are compatible 
if the infimum of seA, E), where A is a finite sequence 
of elements of (I> and E = peA), exists in R. This 
infimum will then be noted s«(I>, p). 

The couples (A, E) considered in Sec. 3 are in an 
obvious sense equivalent to correlation data «(1>, p) 
where (I> is a finite set. We note the following easily 
proved result. 

Proposition 3: Let the correlation data «(I>, p) be 
compatible. If A \ A 2, A I+A2 E (1), then p(Al+A2) = 
peA 1) + peA 2). If ex E R and A, exA E (1), then 
p(exA) = exp(A). If At, A2 E (1), ex E Rt, and Al ~ 
exA2, then peAl) ~ exp(A2). 

If A(l) = (A71»I:5~:5.' A(2) = (A72»I:5~:5. and if 
s«A(l), A(2», (Eo), E(2») is defined, then s(A(l) + 
A (2), E (l) + E (2») is defined and 

s(A(l) + A(2), E(l) + E(2» 

~ s«A(l) , A(2», (Em, Em» (4.1) 

Definition 4: We will call eK (resp. ffiK) the space 
of real continuous functions (resp. of classes of real 
bounded measurable functions) vanishing outside of 
a compact K C <R, and e (resp. ffi) the union over K 
of the spaces eK (resp. ffiK). We call X the space of 
classes of real locally integrable functions on <R' 

We will also write e,,+l = e (\ (t,,+l (resp. ffi"+l = 
ffi (\ (t,,+I)' Clearly then e (resp. ffi) is a real vector 
space, direct sum of the e,,+l (resp. ffi"+I)' One may 
write K = (K"+I),,EN, then K is a compact in <R if 
and only if, for each pEN, K"+l is a compact in 
R"" and only a finite number of terms of the sequence 
are not empty. C = (Cp+l)pEN E eK means that, 
for each pEN, Cp +l is a real continuous function 
vanishing outside of K,,+l' B = (Bp+l)pEN E ffiK 

means that, for each pEN, B p +l is a class of real 
measurable function vanishing outside of K p + l • 

eK and ffiK will be considered as Banach spaces 
for the norms 

IICII = max IC(~)I, IIBII = ess. sup. IB(~)I (4.2) 
~E(\\ ~E(\\ 

respectively. eK is a subspace of ffiK. One has the 
inclusions (t ~ ffi ~ e. 

Let the data (e, p) be compatible. p is linear from 
e to Rand p(C) ~ 0 if C ~ O. From this results 
that the restriction of p to every eK is continuous: 
p is a positive measure. Similarly, if the data (ffi, p) 
are compatible, the restriction of p to every ffiK is 
continuous. We will now obtain more information 
about p. 

Let X be a real continuous function ~ 0 with 
compact support, equal to 1 on a set L C R' which 
is symmetric (L = - L), convex and compact. 
Let w be a measurable function, 0 ~ w ::; 1, vanishing 
outside of a measurable set W C R"", p E N*, of 
measure w. We call a sequence (xo1 XI, ••• , x,,) of 
elements of R' an "", sequence" if W(XI - X o, ••• , 

x,,-xo) >0 and assume that, whenever (xo, Xl,' . " x,,) 
is an '" sequence, all the differences Xj - Xi, for 
o ::; i < j ::; p, belong to !L. 

Let now X = (Xi)I:5;:5n, n E N*, be a sequence of 
elements of a measurable set A C R" of measure V. 
We call nz[X], 1 ~ p, the number of elements X; of X 
satisfying the following two conditions: 

(1) There exists an ",-sequence containing X; 

formed with different elements of X. 
(2) The set Xj + L C R" contains exactly 1 ele­

ments of X different from Xj' Xj belongs thus to at 
most (p + 1) [l !/ (l - p)!] ",-sequences and therefore 

'" l' 
w[Xl ::; ~ (l_·p),nz[X]. 

If we write, for PI ~ P 

X".+l(~l' h, ... ,~"J = X(~I)X(~2) ... x(~",), 

we have also 

(4.3) 

(4.4) 

(4.5) 
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Let now P + 2 ~ PI < P2, we have 

+ f (l - PI)! l! [X] 
l-p,+1 (l - p)! (l - PI)! nz , 

II 
(l _ 'PI)! nl[X] < Xp.+I[Xl for 1 2:: PI, 

and the series 

(4.6) 

(4.7) 

Let now the correlation data (cp, p) be compatible, 
where CP is either e or CB, wE CP, and take 1 =AI Eel' 
Either p(AI) = 0, in which case it follows from (4.10) 
that pew) = 0, or we may write p(AI) = v-" v E R!. 
In this case if P(XP.+I) < V-If..! and 

pew) > v- l (a(p2 + I)P2!/(P2 - PI)! + Ef..!), 

we have 

s(cp, p) ~ s«x, w, AI), (p(x), pew), V-I» 

~ v-IF(v; w, a). (4.15) t (l - PI)! = :t I! 
I-p. (l - p)! 1-0 (l + PI - p)! 

1 1 
= PI - P - (PI - P - I)! 

Since for any choice of E, a E R! the right-hand side 
of (4.15) tends to - ro when w tends to zero, this 

(4.8) inequality implies that pew) tends to zero when w 
tends to zero. We have thus proved: 

converges. To any E E R! we may therefore choose 
P2 such that 

hence 

~ (I - PI)! . 
£.oJ (l )' < E, 

1-",+1 - P . 

P , ", 
w[X] < (P :.... )' L: nz[xl + EX",+I[X], 

2 p. 1-" 

Let 

". 
n+[X] = L: nz[X]. 

z-" 

(4.9) 

(4.10) 

(4.11) 

If X is any sequence of n points of A for which 
n+[X] 2:: n+, n+ E R+, there exist at least 
E(n+/(p2 + 1» w sequences formed with disjoint 
(p + I)-tuples of elements of X. If n !'D (A, n, n+) is 
the measure of the subset of An formed by the se­
quences X for which n+[X] 2:: n+ we have therefore 

n! 'D(A, n, n+) 
, E(,.+/(".+I»)V .. -"E(,,+/{J'.+l)) < n.w 

- [n - (P + I)E(n+/(P2 + I»]! [E(n+/(P2 + I»]! 

(4.12) 

Let J I be the interval (-f..!, +fJ.) of R, where 
fJ. > 0, and J 2 the interval (a(p2 + I)P2!/(P2 - p)! + 
EfJ., + ro), where 0 < a < 1/(P2 + 1). We have 

tl(A, n; (xp.+I, w), (II, I 2» 

~ 'D(A, n, a(p2 + 1)n); (4.13) 

hence, if t(v; (X".+I, w), (II, I 2» is defined, 

lev; (x".+I, w), (II, I 2» ~ F(v; w, a) 

= a log w/a + (1 - pa)(1 + log v) 

- [1 - (P + l)a] log [1 - (p + l)a]. (4.14) 

Proposition 4: Let U be a bounded open 8et of 
R"', P E N* and let the correlation data (cp, p) be 
compatible, where CP is either e or CB. There exists then a 
function Wu > 0 of E, defined for E E R!, such that if 
wE CP n (1,,,+1, 0 ~ W ~ 1, and w vanishes outside of a 
set of measure ~ w with closure contained in U, then 

pew) ~ E if w ~ WU(E). (4.16) 

Let CP = e. If S is open, of Lebesgue measure 
~WU(E), and the closure of S is contained in U, we 
have, for the p measure of S, 

peS) ~ E. (4.17) 

Therefore if a subset of RP
' is of Lebesgue measure 

zero, it is also of p-measure zero. By the Radon­
Nikodym theoremS there exists thus a locally 
Lebesgue-integrable function P"+I 2:: 0 such that, 
for any G E ep + l , P E N*, peG) is expressed by the 
following Lebesgue integral 

peG) = J d~l ... d~" P1>+I(~I' .. , ,~,,)G(~I' '" ,~,,). 
(4.18) 

P1>+! is defined only up to a set of measure zero, i.e., 
only its class Pp+! is determined. We will again note p 

the sequence (P1>+I)"EN and identify this sequence 
with an element of X (see Definition 4). We may 
then write, for any GEe, 

peG) = J d~ p(~)G(~) = PIGI 

+ L: J d~l '" d~1> P(~I' .. , ,~,,)G(~I' ... '~1»' 
'PEN· 

(4.19) 

8 See for instance L. H. Loomis, An Introduction to Abstract 
Harmonic Analysis (D. Van Nostrand Company, Inc., 
Princeton, New Jersey, 1953), p. 41. 
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We could have seen directly that p is locally integra­
ble by applying the Radon-Nicodym theorem to (R 

rather than R'''. 
Let now CP = ffi. If B ffi,,+I, P E N* and Ii 

vanishes outside of a closed set contained in the 
bounded open set U, it follows\} from theorems of 
Lusin and Urysohn4 that to any w > 0 there exists a 
function C C e.,+I, with norm IICII ::5 IIBII and sup­
port in U, such that 13 - C vanishes outside of a 
set of Lebesgue measure ::5w. If w ::5 Wu(E) we have 
thus, using (4.18), 

Ip(B) - p(C)! < (lIBIi + IICI!) (4.20) 

\p(C) - f dtl ... dt., P.,+I(tl, ... ,t,,)13(tl' ... ,t,,)i 

< E(IIBII + IICID; (4.21) 

hence 

pCB) = f dtl ... dt" P,,+l(tl, ... ,t,,)13(tl' ... ,tp). 

(4.22) 

Theorem2: If the correlation data (CP, p) are compati­
ble, where CP is either e or ffi, there exists one and only 
one element of x, again noted P = (PP+1)pEN such that 
for all A = (A p +1\,EN E CP, 

peA) = f dt p(t)if(t) = PIAl 

+ L f dtl ... dt'P P(tl, ... ,t,,)if(tl' ... '~'P)' 
pEN· 

(4.23) 

If 1 = Al E al and peAl) = 0 we have seen that 
peA) = 0 for all A E CP and it is easily checked that 
s(p) = o. 

5. CORRELATION FUNCTIONALS 

If we put on X the topology of convergence in L1 
on the compacts, X becomes a Frechet space.lO If the 
correlation data (13, p) or (ffi, p) are compatible we 
have identified P with an element of X. Using the 
bilinear form (4.22) we may identify the dual of X 
with ffi. ffi with the strong topology ::lb[X] is then 
identical to the inductive limit of the ffiK and induces 
on 13 the inductive limit topology of the 13K

, for 
which e is separable. We are however interested now 

9 See for instance E. J. McShane, Integration (Princeton 
University Press, Princeton, New Jersey, 1947), pp. 236, 237. 

10 The relevant theoretns for the properties quoted below 
can be found in G. Kothe, Topologische Lineare Raume I 
(Springer-Verlag, Berlin, 1960). What will be needed in the 
sequel is that, if ffi is considered as a space of linear func­
tionals on X, there exists a countable subset of e which is 
dense in ffi for the weak topology. 

in the weak topology ::l.[X] of ffi. For this topology 13 
is dense in ffi and ffi is thus separable. 

Let now CPo be a countable weakly dense subset 
of ffi such that for any compact K C CR, with char­
acteristic function x,K, there exists A E CPo such that 
if ~ x,K. Let the correlation data (cpo, Po) be compat­
ible and write So = s(CPo, Po). Let Xl and X2 be sub­
sets of ffi containing CPo and Xl, X2 extensions of Po 

to Xl and X2 respectively. If Xl C X2 and X2 is an 
extension of Xl, we write (XI, Xl) ::5 (Xz, X2). With 
this order, the set of all couples (X, x) of subsets 
of ffi containing CPo and of extensions of Po such that 
that seX, x) = So is inductive. By Zorn's lemma it 
contains a maximal element (CP, p). 

We now see that CP = ffi. Let indeed A be a finite 
sequence of elements of CP and B E ffi. Define 

IA = (E : s«A, B), (p(A), E» ~ so}. (5.1) 

From Theorem 1 [the set {(E, E) : s«A, B), 
(E, E» ~ so} is convex and closed] it follows that 
I A is a closed interval. From the corollary to Theorem 
1 and from Proposition 3 it follows that if A contains 
a function ~ xK where K contains the support of B, 
IA is compact and not empty. If A is the sequence 
(AI, A"), IA CIA' (\ IAu. In particular, no interval 
IA is empty. The intersection I of all the intervals IA 
being an intersection of closed sets with at least one 
compact cannot be empty, otherwise a finite inter­
section would already be empty and therefore one of 
the IA would be empty. Therefore if Eo E I, 

s«(A, B), (p(A), Eo» ~ So (5.2) 

for any A and therefore 

s(cp V {B}, p') = So, (5.3) 

where p' is the extension of p to CP V {BI which takes 
the value Eo at B. Since (IY, p) is maximal, B IY, 
i.e., CP = ffi. 

From Theorem 2 it follows then that Po must admit 
the weakly continuous linear extension p to ffi and p 

is uniquely determined by Po. 

Proposition 5: Let CPo be a countable subset of ffi, 
dense in ffi for its topology of weak dual of JC and such 
that for any compact K C CR, with characteristic 
function x,K, there exists A E CPo such that A ~ XK. 
Let the correlation data (IYo, Po) be compatible. Po 
has then an extension to a linear functional p E X 
on ffi (this extension is unique). The correlation data 
(ffi, p) are compatible and we have 

s(ffi, p) = s(IYo, Po). (5.4) 

Corollary: If the correlation data (13, Po) are compati-
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ble, where 

Po(C) = J d~ p(~)C(~), (5.5) 

then the correlation data (ill, p) are compatible, with 

pCB) = J d~ p(~)B(~). (5.6) 

Furthermore 
s (ill , p) = see, Po). (5.7) 

Definition 5: An element p of X such that the correla­
tion data (ill, p) are compatible will be called a correla­
tion functional and we will write s(ill, p) = s(p). 

Let seA, I) be defined, where A = (A U)I:>U:>.' If 
we write AU = Au+ - A U-, (T = 1, ... , q, where 
A u+ ;::: 0, A u- ;::: 0 (and A g- does not take the value 
+ co) we obtain from the corollary to Theorem 1 the 
relation 

seA, I) = s«A, A +, A -), I X R2.). (5.8) 

Hence, using Theorem 1 [Eq. (3.28)] and Proposition 
3, to any t E R! we may choose 1+, r such that 
r - reI and 

s«A +, A-), W, r» > seA, I) - t. (5.9) 

We want to prove that we can find p such that 
peA) E I and s(p) > seA, I) - 2t. In view of the 
above remark it is sufficient to prove that p exists 
such that p(A±) E I± and s(p) > s«A +, A -), 
(1+, r» - t. In other words it is sufficient to show 
that p exists such that peA) E I and s(p) > 
seA, I) - fE, supposing now A' ;::: 0 for all (T. 

Let thus seA, I) be defined, A = (A ')1 :>.:>. and 
AU;::: 0 for (T = 1, ... , q. Let also CPo be a subset of ill 
satisfying the conditions of Proposition 5 and A' = 
(A")'EN* be an infinite sequence of elements of a 
containing all the elements of CPo. We assume that, -, for alll E N*, A' may take the value + co only at 
points of ill for which some AU, CT = 1, '" , q, takes 
the value + co. We note A:k ) = (A")I:>':>., k E N*, 
the subsequence formed by the first k elements of A'. 

Given 0, E E R! we may define, by recursion on 
k, sequences I(k) C I and I~k) C Rk of intervals of R 
satisfying the following conditions: 

(1) The length of every interval of the sequences 
I(k), I:k ) is at most k- 10. 

(2) If the sequences A:o) and 1:0 ) are defined to be 
empty and 1(0) = I, the closures of I(k) and I~ for 
k E N* are contained in I(k-I) and I: k - 1 ) X R re­
spectively and the following inequality holds 

8«A, Ark»' (I(k), Irk») 

(5.10) 

That this is possible follows as above from the 
corollary of Theorem 1 and Eq. (3.28). The inter­
section over k of the I(k) consists of only one point 
EEl and the intersection over k of the lth intervals 
of the I:k ) consists of only one real number Ell. 
Let E:k) = (EIl )I:>':>k' We have thus, for any k, 

(5.11) 

and it follows from Proposition 5 that there exists a 
correlation functional p E X such that, for all 
A" E CPo, E" = peA"~). 

We now show that we have 

(5.12) 

for CT = 1, '" , q. For any ME N* let indeed AIT
•

M 

be equal to AU at the points of ill for which AU ~ M, 
equal to zero otherwise. We may assume that the 
classes A u.M belong to CPo, it follows then from 
Proposition 3 that 

(5.13) 

and (5.12) follows from the theorem of B. Levi.ll 

Let us now assume that A' contains the square 
of AU for CT = 1, ... , q [for definiteness we take 
A'u = (AU)2] and also AU - A IT

•
M, (A .. ·M)2, A'" -

(A U
•
M)2 for all M E N*. Applying Proposition 3 to 

the inequality 

(A" - AU
•
M) ~ M-l«A")2 _ (A .. ·M)2), 

we obtain 

E U 
- J d~ p(~)A"·M(~) 

(5.14) 

~ M- 1(E'U - J d~ p(~)[A"·M(~)]2) ~ M- 1E'''. (5.15) 

Letting M go to infinity we get 

(5.16) 

Proposition 6: If seA, I) is defined, A = (A ") 1:>":>a, 
to any E E R! there exists a correlation functional p 
such that 

s(p) > seA, I) - E 

J d~ p(~)AU(~) E r for (T = 1, ... , q. 

(5.17) 

(5.18) 

11 See for instance F. Riesz and B. Sz-Nagy, Le~on8 
d'Analyse Fonctionnelle (Academie des Sciences de Hongrie, 
Budapest, 1954), 3rd ed., p. 36. 
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6. CORRELATION FUNCTIONALS ASSOCIATED WITH 
FINITE CORRELATION DATA 

Let p be a correlation functional and A = (A U)l:'>g~a 
a finite sequence of elements of (t. Suppose that the 
functions jiA" are integrable on at and that 

E" = J dl; ji(I;)A(I;) dl;, u = 1, ... ,q. (6.1) 

We show that seA, E) ~ s(P), where E = (E")l~"~.' 
Since we may write A" = A g + - A"-, whereAH ~ 0, 
A"- ~ 0 and both jiA"+ and pA"- are integrable, 
it follows from Proposition 3 that it is sufficient to 
prove our statement under the assumption that 
A" ~ 0 for U = 1, ... , q. 

Let XM, M E N*, be the characteristic function 
of the set of all I; E at such that there exists a u, 
1 ~ (f ~ q,forwhichA"W > MorA"W = +co, 
Define also A,,·MW = A"W if A"W ~ M, 
A,,·M(I;)=O otherwise. If A"=(A;+I)pENU=1,"', q, 
there exists r N* such that A;+I = 0 for p > r. 
There exists also a compact L C R Y such that for all U 

and all p, the support of A;+l is contained in (LY, 
We call L the characteristic function of L and write 

p 

Lp+1(h, ... ,1;,,) = II L2(1;;). (6.2) 
1=1 

For every k E N* we construct a sequence 
B(k) = (B7k»1~g~ka+3 of elements of (B as follows: 
1 = B~k) (BI, B7k) is the class of i, B~k) that of 
Lr +a, and B~~~-1)+g+3 = A"·M for u = 1, '" , q; 
M = 1, '" , k. We define E(k) = (E7k»ISgSko+3 by 
E7k) = p(B7k» and let I(k) = (17k»1 ~"$ko+3, 
I'k) :3 E7k)' By construction we have, for all k, 

S(B(k), I(kJ ~ S(B(k), E(k» ~ s(p) (6.3) 

and t(v; B(Ab vI(k» is therefore defined for some 
v E R!. It follows from the remarks after Theorem 1 
and Theorem 2 that if E~k) = 0 we have seA, E) ~ 
s(p) = O. We now assume that E! E R!. Then, if 
the length of the interval I~k) is chosen sufficiently 
small, the function lev; B(k), vI(k» of v will be defined 
only within an interval (vo, VI) of arbitrarily small 
length [with Vo < (E~k»-l < VI]' In particular to 
any 0 E R! we may choose k so large and the inter­
vals I~k) and I~k) such that vII~k) is contained in the 
interval (0, 0) of R. We make use later of the pos­
sibility of choosing 0 as small as we wish. 

Given E E R! we may choose v(vo < V < VI, V 
possibly depending on k) such that 

lev; B(k), vI(k) > v[s(p) - eJ. (6.4) 

Let then n E N* and a = (ai)ISi$" E (Rtf be such 
that n-1V(a) = v. Forn large enough one may choose 

a such that 

n- I log '0' > v[s(p) - 2e], (6.5) 

where n!'O' = n!1.J'(A(a), n,' B(k), vI(k» denotes the 
measure of the set II C A'(a)" of all X such that 

u = 1, '" ,kq + 3. (6.6) 

For every X = (Xl, ... , X,,) E II consider the 
elements X of the sequence X such that for some 
p E N* there exist distinct elements Xi., ••• , Xi. of 
X, distinct from x, such that 

X!+l(Xi. - X, .,. ,Xi. - X) = 1. (6.7) 

By suppressing all such elements X of X we obtain a 
sequence X' such that 

i[X'] = o. (6.8) 

X' consists of n - n' elements, where n' < no. 
Let (n - n') !'O~_ .. , be the measure of the subset of 
A' (a)"-'" consisting of sequences X' obtained as 
above. We have then 

" " n! V( )"'( ')"'" n.'O < £.... "( _ ')' a n - n 1V,,-n' 
n' n.n n. 

(6.9) 

so that 

, .[ veat' J( ''''] '0 < nu max -'I max U,,-n' • 
O:Sn.'5no n. n' 

(6.10) 

Therefore, for 0 sufficiently small and n sufficiently 
large 

n-1 log '0' < n-1 log 'O~-n" + ve, (6.11) 

where n" is the value of n' for which the maximum 
of 'O~_", occurs. From (6.5) and (6.11) we obtain 

V(a)-l log 'O~_"" > s(p) - 3e. (6.12) 

Define now nl[Xj as the number of elements X of 
the sequence X such that X + L contains exactly l 
elements of X different from x. We have then 

(6.13) 

We may choose "I E R~ (independently of k) such 
that vII~k) is contained in the interval (0, "I) of R. 
We have then 

Hence, for p ~ r, l ~ r + 2 

n-I([lV(l - p)!]n[X]) 

< [(l - r - 2)V(l - p)!J'Y. 

(6.14) 

(6.15) 
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To any TJ E R! one may thus choose lo E N* such 
that 

-1" l! [X] f 1 n .t..... (l _ )1 n l < TJ'Y or P = ,"', r 
1>1. p . 

(6.16) 
and we obtain 

n-1(.L"+1[X] - LP+l[X'D 

I. l' 
< n-1 E (l _. )1 (n/[xl - n/[X']) + vy 

1=" P . 

S n- 1 (I ~! I) [:t (nl[.x1 - nl[X'J)] + TJ'Y 
o p. l#p 

s olo!/(lQ - p)! + TJ'Y. (6.17) 

The left-hand side is 2:0 and may be made arbi­
trarily small by taking 0 sufficiently small. 

Given 8 E R! we may choose M (M E N*, M S k) 
for k large enough such that peA ~.M) > E" - 8 and 
takeI~W-l)+"+3 = (E" - 8, E" + 8) forO' = 1"", q. 
Then peA •. k) > E U 

- 8 and we may also take 
I(i~-l)+u+a = (E

q 
- 8, E U + 8). We have thus 

o S n-1(J".M[X] - JU.M[X'J) 

S Mn-1(n lf + t eLp+1[X] - LV+1[X'D) 

< M(o + rolo!/(lo - r)! + rTJ'Y) (6.18) 

and we obtain for 0, '11 sufficiently small 

J".M[X'] E Vea)!" (6.19) 

J".k[X] E V(a)!", (6.20) 

where we have written r ~ (E
q 

- 28, E U + 28). 
Finally from 

we get 

JU.M[X'] S Au.k[X'] s A"·k[X] 

AU[X'] = AU.k[X'] , 

(6.21) 

(6.22) 

Summing up, we have shown that, given e, 8 E R!, 
one can, for k sufficiently large, choose n* E N 
such that for every n 2: n* there exists nil EN and 
a E (R!), satisfying the inequalities (6.12) and 
(6.23). Together these inequalities imply that 

V(a)-l log 'U'{A(a); A, I) > s(p) - 3e, (6.24) 

where I = (r)l~.~q. From this we get seA, E) ~ s(p). 

Definition 6: Let p E X be a correlation functional. 
If A E ex is such that pA is integrable on cR, we define 

peA) = f d~ p(~)A(~). (6.25) 

Proposition 7: If A = (A")l~,,~q and p(AU) is 
defined for all 11, 1 S I1Sq, then 

s(A, peA»~ ~ s(p). (6.26) 

Proposition 6 and Proposition 7 together imply 
the following result: 

Theorem 3: seA, I) is defined if and only if there 
exists a correlation functional p such that peA) E I, 
then, 

seA, 1) = sup s(p). (6.27) 
p(A)EI 

Let P* C R4 be the set of all E such that peA) = E 
for some correlation functional p. For E E P* we 
define 

s*(A, E) = sup s(p). (6.28) 
p(A)-R 

Theorem 3 then says that seA, I) is defined if and 
only if I (\ P* rf t/> and that in that case 

seA, I) = sup s*(A, E). (6.29) 
EElnp, 

7. POSITIVITY AND BOUNDEDNESS PROPERTmS 
OF CORRELATION FUNCTIONS 

It is convenient at this point to introduce a new 
space 

m = E R(v+l)" 

v+lEN 

with the same topology and measure as cR, but to be 
considered as distinct from cR. Let (£ be the space of 
real continuous functions with compact support 
in m and (£,,+1 be the subspace of (£ consisting of 
the functions with support in R (p+ 1) '. (£ is the direct 
sum of the ~+1 and for any f E (£ we write f = 
(fp+l),,+lEN with fp+1 G:v+l, fo is identified to a real 
number. 

Let fl1+1 E (£p+l, P N, and let '" be a partition 
of the set /0, 1, ... , p} into r subsets 8 1 = 
lin, i 12, ••• }, ••• , Br = {irh i r2 , ••• }. We may 
suppose that i'k < iw if k < k' and i'l < if'l if 
j < j'. For all Y = (Yl, .•. , Yr) E R rr, let x~(Y) = 
Yi if i E Bj • We define 17v+o E (£, by 

f1v+l)(Yl, ... ,Yr) = f~P+l)(Y) 

= fp+l(X~(Y), x~(Y), ... ,x;(Y». (7.1) 

The sum of the f'('p+ll over all partitions of 
\0, 1, .,. , p} is an element f(p+1) of (£. If f = 
{f,,+I)P+lEN E (£, we define t..f E (£ as 

t..f = fo + E t(P+1)' (7.2) 
pEN 

Let p = (PV+1)"EN X be a correlation functional. 
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We define a locally integrable function cP on m by 
the condition that it reduces to CPp+l on R(P+I)', 
p + 1 E N, where CPo = 1 and 

(7 :3) 

for pEN. Notice that, apart from a set of measure 
zero, CPD+l is, by definition of p, symmetric in its 
arguments Xo, Xl, ... , Xp' We introduce now a posi­
tive measure J.I. in m, i.e. a positive linear functional 
on <£, by 

J.I.(f) = fill dx cp(x)ilf(x) 

= fo + :E f dxo dX1 ... dx" 
"EN 

x CP,,+I(XO, Xl, '" ,xp)(il!)P+I(XO , Xl, ... ,Xv), (7.4) 

Let r, rEG:, we define a structure of associative 
algebra over RinG: by introducing a product 
f @ rEG: such that, for p + 1 E N, 

(f @ f2)p+I(XO, X" ••• ,xp ) 

,,+1 
= :E f!+1(XO, ... ,xr)f!-r(xr+1 , '" ,xp). (7.5) 

"+1-0 

From the symmetry property of the functions CPP+ I 

it follows that if t E <£ for j = 1, ... , m, we have 

J.I.(t @ ... @ t @ rl @ . " @ r) 
= J.I.(t 0 '" 0t+ 1 0fi 0··· @r)· (7.6) 

If we define a linear mapping E> : f ~ C from <£ to e, 
by writing 

C"+I(~I' •. , ,~,,) 

= J dx f,,+I(X, X + ~,' .,. ,X + ~,,), 
for pEN, (7.4) becomes 

J.I.(f) = fo + p(E>Af). 

(7.7) 

(7.8) 

Let again A'(a) be defined as the subset of A(a) 
formed by the points X such that X + !M C A(a), 
where 

M = {x : -K ::::; Xi ::::; K for i = 1, ... ,v}, (7.9) 

but we assume now that K is so chosen that f!+1 
vanishes outside of (!M)"+l, for j = 1, ... , mi 
pEN. Let also xo be the characteristic function 
of A(a). If X = (Xl, •.• , xn) E A'(aY' and 

... 
f = @t 

i-I 

we may write 

fo + V(a)-I(E>il!)[X] = V(ar{fo yea) + ~ :t, :tl .•. it1 (E>f).,+I(Xi, - Xi., ... ,Xi~ - Xi.)] 

= V(ar
1 J dx [g (f~x.(x» + ~ :fl '" it1 (f' @ ···0 !"').,+I(X + Xi" X + Xi., .. , ,x + x;~) ] 

From this identity we obtain in particular that if 
f\ rEG: and 12 ~ 0, then 

J.i(t 0 r @ t) ~ O. (7.11) 

Let r"', f E <£, m E N*, be the mth power of f 
with respect to the product @. If m is even, m = 2r, 
we define 

(7.10) 

for some pEN. If, for x, y E R' and H = 
('171, ••. , '17.,), (~1' .. , , ~p) E R''', we write 

T'yft(X) = ft(x - y) (7.15) 

THCp+1(~" '" ,~p) 

(7.16) 

IIfl12r = [J.I.({~2r)]1/2r . (7.12) we find 

Then, the Holder inequality yields o ::::; p(T'HCp+l ) = p(THE>/fP+I) 
2r 

IJ.I.(f1 0 r 0 ... @ rr)1 ::::; II IWI\2r, 
i-I 

(7.13) = P(E>CfI @ T'q.fl @ ... @ Tq.fl» 

and the Minkowski inequality gives ::::; P(E>A(j1 @ T q.f1 @ ... @ T~.f1» 

lit + tll2r ::::; IItll2r + IWII2r. (7.14) = J.l.Cf1 @ T q.f1 @ '" @ Tq.f1)' (7.17) 

Let /1 E <£", /1 ~ 0 and Cp + 1 = E>rt("+1l E ep +1 On the other hand, applying the Holder inequality 
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to (7.10), we obtain 

P.(fl (8) T~.tl (8) '" @ T~pfl) 

::; p.(ffP+l) = p(EMff"+J). (7.18) 

Writing G = @A/f(P+ll we have thus 

(7.19) 

For any Bp+l E CB,,+1 one may choose fl such that 
IB,,+d ::; G"+1' then 

Ip(THBp + l ) 1 ~ p(G). (7.20) 

We may reformulate our result as follows 

Proposition 8: If B p + l E CBp + l there exists GEe, 
G 2': 0 such that, for any correlation functional p, the 
absolute value of the convolution product P,,+l * Bp +l 
is bounded by p(G). 

P,,+l * B"+l is thus a continuous and bounded 
function. 

8. INTRODUCTION OF A HILBERT SPACEI2 

It follows from (7.11) and more directly from 
(7.13), (7.14) that 

Ip.(fl @ f2)1 ~ IItIl2'lIrIl2, (8.1) 

IW + FII2 ::; IW//2 + IIn/2' (8.2) 

Therefore, with respect to the scalar product 
p.(fl (8) F), (£ is a real pre-Hilbert space. Taking the 
quotient by the subspacel3 of the elements fO such 
that IIf[[2 = 0 and then completing one obtains a 
real Hilbert space q. Let 'lr 1 be the image of f E <£ 
in q, then the linear set D formed by all vectors 'l! r 
is dense in q by construction. Let (£K be the sub­
space of <£ formed by the functions f having their 
support in a compact K C m, and consider (£K as a 
real Banach space with norm 

Ilfll = max If(x)l· 
zEK 

(8.3) 

The restriction of the mapping f ~ 'l! 1 to (£K is then 
continuous and q therefore separable. The mapping 
'l! 1 ~ 'l! / 01 is linear and may be represented by an 
operator Q(f) with domain D: 

(8.4) 

12 The Hilbert space construction described in this section 
follows Wightman's well-known construction in quantum 
field theory, see A. S. Wightman, Phys. Rev. 101,860 (1956) 
and also H. J. Borchers, Nuovo Cimento 24, 214 (1962) and 
A. Uhlmann, Wiss. Zeitschr. Karl-Marx Univ. Leipzig. Math. 
Naturwiss. Reihe 11, 213 (1962). The Wightman construction 
is itself analogous to Gelfand's construction (see for instance 
M. A. Naimark, Normed Rings (P. Noordhoff Ltd., Groningen, 
The Netherlands, 1959). Here however we may have a 
"degenerate vacuum" [cf. K. Hepp, R. Jost, D. Ruelle, and 
O. Steinmann, Helv. Phys. Acta 34, 542 (1961)J. 

13 This subspace is an ideal of the algebra G:. 

If t 2': 0, then Q(t) 2': 0 by (7.11). If <1>, 'l! E D, 
ft, f2 E <£, we have 

(<1>, Q(t)'l!) = (Q(r)<I>, 'lr) 

(<1>, Q(fl)Q(f2)'l!) = (<1>, Q(r)Q(t)'l!), 

(8.5) 

(8.6) 

i.e., the operators Q(f') are symmetric and commute 
with each other. 

If 1 = fo E (£0, Q(fo) is the identity. If we write 

'l!r. = n, (8.7) 

we have, for all f E <£, 

p.(f) = (n, Q(f)n). (8.8) 

Definition 7: For any y E RP, f = (fp+l)P+lEN E (£, 

we define 

(8.9) 

= fp+l(XO - y, Xl - y, ... ,xp - y), pEN, (8.10) 

Tvf = (r.tp+1)p+IEN' (8.11) 

The operator U(y) defined by 

U(y)'l!r = 'l!'vr (8.12) 

is unitary (or, since q is real, orthogonal). The 
operators U(y) define thus a strongly continuous 
unitary representation of the translation group of 
RP in ~ (strong continuity follows from the conti­
nuity of the mapping (£K ~ D and the density of D 
in (1). Notice that n is invariant under this representa­
tion. 

Theorem 4. There exists a real separable Hilbert 
space (1, a linear set D dense in (1 and a linear mapping 
f ~ 'l!1 of <£ onto D such that ('l!/, 'l!/) = p.(fl @F). 
The relation 

Q(t)'l!1 = 'l!NPI (8.13) 

defines a symmetric linear operator Q(f) with domain 
D, such that Q(f')D C D, Q(f)QW) = QCr)Q(fl) 
and f 2': 0 implies Q(fl) 2': O. 

There exists a weakly continuous representation of 
the translation group of R P by unitary operators in f) 
which map D into itself, and a vector nED invariant 
under this representation and such that, for any f E (£, 

Q(f)n = 'l!r, !L(f) = (n, Q(f)n). (8.14) 

Let again Xa be the characteristic function of 
A(a), and let f E <£. We define 

V(a)fa = J dy xa(yhf, F(a) = II V(a)faI12r. (8.15) 
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It follows from (7.13) that 

1/-1('1' • .1 (8) ... (8) '1' •• ,1)1 ::;; [I 111 12.J 2
• = /-I(f2r

), (8.16) 

and from (7.14) that 

F(at ••• a,i + a'" •.. a') 
, I " 

::;; F(at , ••• I a,i, ... ,a') 

8pace l)', a linear 8et D' den8e in l)', a vector 0' D' 
and, for every f (i, a symmetric operator Q' <f) 
with domain D' BUch that Q'(f)D' CD', Q'(p)Q'(r) = 
Q'(t)Q'(f) and f ;::::: 0 implie8 Q(f) ;::::: O. If XII i8 the 
characteri8tic function 01 A(a) and we write 

III = V(a)-l f dy Xa(Y)T.li (8.26) 

+ F(at, ... , alii, ... , a'). (8.17) " then, when minl :>.:>, a' ~ + 00, 

Lemma Al (see Appendix), with N* replaced by 
R!, applies to the function F (a) because of (8.17) and 
the boundedness property (8.16). There exists 
therefore S E R+ such that, when a ~ 00 (Le., 
mini"'''' a' ~ + (0), 

lim F(a)jV(a) = inf F(a)jV(a) = S1/2r
• (8.18) 

This means that /-I<-e2r
) has the limit S. 

Let now r E <i, 1 ~ j ::;; 2r. We have the identities 

(8.19) 

(8.20) 

lim /-I(f! ® .. . (8) I~) 

= (0', Q'(fl) ••• Q'(fm) 0'). (8.27) 

Furthermore, 

(8.28) 

(0', Q'(j)O') = (0, Q(f)O) == /-I(f). (8.29) 

Here D' is the set of vectors PO' of l)' obtained by 
applying a polynomial P in the operators Q'(f) to 0'. 

9. ANALYTIC CORRELATION FUNCTIONALS 

Definition 8: The correlation functional p is 8aid 
to be analytic if, for each f (it 

(9.1) 
Therefore, when a ~ 00, where 

[ 1 J1I'" In::_~up ml Km(f) E R+ 

lim /-I(f; (8) •.. (8) f!r) = Sf, (8.21) Km(f) = 
sup lP(8(T .. J (8) ..• (8) '1' .... 1))1. (9.2) 

with S' E R. From (8.15) and (7.13) we have "' ....... ... 

/-I(f! (8) ..• (8) f!') = V(a)-2r f dY1 ••• dY2. 

2r 

1/-I(T.f (8) ... (8) TuOTr)1 ::;; IT IW!!2r, (8.23) 
,"-1 

which implies that, if 'I1i RV for j = 1, ... , 2r, 

lim /-I(T~,/! (8) ... (8) T~ .. f~r) 
c......, 

= lim p,(f! (8) ... (8) I:') = Sf. (8.24) 

Notice also that, if 1 = f2r 

(8.21) and (8.24) hold therefore with 2r replaced by 
any integer m. 

We may at this point construct from the expres­
sions S' a Hilbert space ~' and operators Q' in a 
manner similar14 to that in which we constructed l) 
and the operators Q from the expressions /-1(/). 

Propo8ition 9: There exi8t a real 8eparable Hilbert 
U The role of the algebra <s: being now pJayed by the 

tensor algebra of <s: considered as real vector space. 

Let I = (f1'+l)1'+lEN, f1'+1 = 0 for P ~ r. It is suf­
ficient to check (9.1) when fo = O. One may then find 
gl E (ill gl ;::::: 0 such that 1/1'+11 ::;; g~(1'+l) for p == 
0, ... , r - 1. In that case 

Km(f) ::;; rtn max K",,(gl)' (9.3) 
m:$m':$rm 

In particular (9.1) is satisfied if, for some D E R! 
and all m N*, 

(9.4) 

Let Ii (i",+l, Pi N, j = 1, ... , m. We have 

x x.,(Yl) • - • X"(Ym)p(8il(T,,f (8) ... (8) T" .. !",). (9.5) 

The expression il(TII,r (8) ... (8) Tflmf"') is a sum over 
the partitions of the set /0,1,-", L~-l (Pi+1) -I}. 
Consider a partition w which is not finer than the 
partition into the subsets 

Si = {~ (Pi + 1), ... , ± (P. + 1) - I}, 
.. -1 i-I 

j == 1, ... ,m. 
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Tills means that there is a set B in the partition w 
such that B contains elements of Bj , and Bj " il ~ i2' 
The term 

is, by Proposition 8, a bounded function of Yl,' . " Ym, 
and it vanishes if Y j, - Y j, is outside of some compact 
in R'. This implies that the contribution of (9.6) to 
(9.5) vanishes and we may write 

(n', Q'(t) ... Q'(r)n') 

lim V(a)-'" f dYI .. , dYm Xa(Yl) .,. Xa(Ym) 
.~'" 

X p(8(ry ,Aj' ® ... ® rymf:.n). (9.7) 

Obviously this formula remains true for any t E ~, 
i = 1, ... , m. In particular, for f = fl = = r 
we obtain 

I(n', Q'(f)mn') I :s; Km(Aj). (9.8) 

Let fl, r, ... , E ~ and let'lr = pn' E D' where P 
is a polynomial in the operators Q'(t), Q'cr), 
We have 

I('lr, Q'(f)m'lr) I = l(p2 n', Q'(f)mn') I 

:s; (n', p 4n')'(n', Q'(f) 2m n,)i. (9.9) 

If p is all, analytic correlation functional 

li~ ... ~p [~! (n', Q'(f)2mn')iJ/m 

. [ 1 Jl/m :s; 2 h~ ... ~up m! Km(f:.f) E R+, (9.10) 

and therefore the power series 

i: IIQ'(f)m'lrll z"', 
m=O m. 

(9.11) 

has a nonvanishing radius of convergence. Every 
vector'lr in the domain D' of every operator Q'(f), 
f E ~,is thus an analytic vector (in the sense of 
NelsonI5&) for tills operator. From this follows15b that 
the operators Q' (f) are essentially self-adjoint. Let 
Q'(f) be their closures. If fl, r E ~, f ~ 0, r ~ 0 
and'lr E (1 + Q'(f»(1 + Q'(t»D', we have 

15 (a) E. Nelson, Ann. Math. 70, 572 (1959). (b) Ref. 
15(a), Sec. 5, Lemma 5.1. Let us note that the proof of this 
lemma does not make use of the results in Secs. 1-4. of 
Nelson's paper, and may be studied independently. An 
application of Nelson's lemma to a situation somewhat 
analogous to that considered here has been made by H. J. 
Borchers and W. Zimmermann, Nuovo Cimento 31, 1047 
(1964). 

(1 + Q'(f'»-'(1 + Q'(r»-''lr 

= (I + Q'(f2»-'(1 + Q,(t»-I'lr. (9.12) 

Since Q' (1") is essentially self-adjoint on D', 
(1 + Q'(f2»D' is dense in f)' and the restriction of 
Q'(f') to (1 + Q'(t2»D' is essentially self-adjoint. 
Therefore (1 + Q' (fl) )(1 + Q' (r) )D' is dense in (J 
and the bounded operators (1 + Q'(f»-' and 
(1 + Q'(r»-I commute. This means that the spectral 
projections of Q'(f') and Q'(r) commute, and this 
remains true obviously for any f', f2 E ~. 

Proposition 10: If p is an analytic correlation 
functional, the operators Q'(f), f E ~, are essentially 
self-adjoint and the spectral projections of their closures 
Q' (f) commute. 

10. EXISTENCE OF A THERMODYNAMIC LIMIT 

Let <I> be a two-body central potential (for definite­
ness), i.e., a measurable function on R', with values 
in R U I + (Xl), such that <I>(~) = <1>(1'/) if I~I = 11'/1, 
where 

We assume that iP has a hard core [i.e., <l>W = + (Xl 
if and only if I~I < d, d E R!l and finite range (i.e., 
compact support). We also assume that iP takes only 
the value + (Xl and values in a bounded interval of 
R. Consider a system of identical particles enclosed 
in a box A(a) and interacting through <I> at tempera­
ture (3-I({3 E R!). The grand canonical formalism 
prescribes that to each configuration of n particles 
in A(a), with positions XI, ••• , X .. , a weight 

(10.1) 

be associated, where z = ePil is the activity (iI E R) 
and 

U(X)" = L: <I>(Xj - Xi)' (10.2) 
1~i:Si5n. 

We consider the particles in a configuration as 
unlabeled, hence the total weight isl6 

:Sa = 1: z", 1 dx1 • •• dx" e- f3U
(%l •• 

nEN n. A(a)" 
(10.3) 

Let A = (A '),EN' be an infinite sequence of ele­
ments of a such that 

(1) A: = -iI, A; = !<I> and A!+, = 0 for p > 1. 
(2) A' E e if 0' > 1 and any C E e may be ap­

proximated uniformly by linear combinations of 
A', 0' > 1, with supports in a fixed compact. 

'6 Whether the sum in (10.3) is extended over n E N or 
n E N* is of no importance in the limits which will be taken. 
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(3) For any compact K C <R with characteristic 
function XK, there exists (j > 1 such that A" ;::: XK, 

It follows from (2) and (3) that <Po = fA": (j > l} 
satisfies the conditions of Proposition 5. We note 
A(q) = (A "hsO"sq, q N*, the subsequence formed 
by the first q elements of A. 

For any given q, we may choose K [see (1.7)J 
relatively to the sequence A(q) and define the symbol 
A', Let then b E (R~r be such that A/(b) is a trans­
late of A(a). Let I(o) = (I"hsaSq, we have for the 
contribution :a:a(1(o» to :a: .. of the configurations X 
such that 

r , (j = 1, ' .. , q, (lOA) 

the relation 

:a:a(1(o» E 'U'(A(b); A(q) I I(o»e- tlV
(b)f1. (10.5) 

If {3r C ({3E1 
- E, (JE' + e) with El E R, E E R~, 

we obtain thus, using (3.21), 

s(A(o), I(o» - (JEt - 2E < V(b )-1 log :a: .. (1(0» 

< s(A(o) I I(ol) - (JEt + 2e, (10.6) 

when ming,s. a i is large enough. It follows from 
our assumptions on <I> that the domain of definition 
of s(A(o" E) in R q is bounded. (10.6) implies thus 
for the grand canonical expression of the pressure 

{3-1 lim V(ar1 log Za 

(10.7) 

where the values of E = (E"hsas,. for which the 
maximum is obtained in the right-hand side form a 
nonempty convex compact set K(ql C RO, 

Consider now the grand canonical correlation 
functions defined for p N* by 

p+n 
_ ( ) .... -1 '" Z ({>a,p Xl, ." ,Xp = t:.a £.... -n! 

"EN • 

(10.8) 

where x" is the characteristic function of A(a), We 
replace them by the "averaged" functions 

Pa.p+l(~l1 .,' ,~p) = V(at 1 

X J dx <Pa,p+l(X, x + ~1' .,. ,x + ~p) (10.9) 

(with pEN) and define for all (j E N* 

E"{a) = 2: J d~l ... d~p 
pEN 

(10.10) 

It is then easily seen that E(.l(a) = (E'-(a»ls"s. 
will belong to any neighborhood of K(a) if minIS.s.. ai 

is large enough. 
Let (ai)iEN be a sequence of elements of (R!Y 

such that lim; ... ", a~ = + <X> for i = 1, .'. , 11, Taking 
successively q = 1, 2, ... , we may by a diagonal 
procedure extract from (ai)iEN a sequence (aj)iEN 
such that 

(10.11) 

for all q E N*. Let E~4) = (E'U)g<r5,q. Since 
Eiol E K(o) there exists, by Proposition 5, a correla~ 
tion functional p such that peA IT) = E/U for (j E N* 
and, by Proposition 7 and (10.7), 

(J-l lim V(a~rl log :a:., I = fJ-1s(p) - Efl , • (10.12) 
i-a) 

Because of our assumptions on <1>, there exists 
D E R! such that 

(10,13) 

for all pEN and a E (R~r. The Assumption 2 on 
the sequence A then implies that, when j --t <x> , 

p", i ,1'+1 converges weakly on ep+l towards Pp+1 for all 
pEN, and 

(10.14) 

Using Lusin's theorem as in the proof of Theorem 2, 
one sees that p,,' /.,,+1 also converges weakly on (Bp+l 

towards Pp+1' (10.14) implies that p is an analytic 
correlation functional. 

Proposition A: Let the central tWIJ-body potential <I> 
have finite range and take only the value + co and 
values in a bounded interval of the real axis. Let 
{3 > 0, Z > 0 and let Ai' j = 1, 2, .•. be a sequence of 
parallelopipeds with volumes Vi in 11 dimensions such 
that the smallest side of Ai tends to infinity when 
j --t co. Define 

(10.15) 

(10.17) 
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(10.18) 

where Xi is the function equal to 1 inside of Aj , to 
ze:o outside. Then, one may choose a subsequence 
il', j = 1, 2, '" , of the sequence of the pi such that 
for every p ~ 0 and every bounded Lebesgue-measur­
able function B, of p v-dimensional vectors, vanishing 
outside of a bounded region, 

lim /3-1 Vi! log Zj P, (10.19) 
;-0» 

I,im J d~l ... d~p P;~l(~l' ... '~P)B(~l' '" ,~p) 
,-'" 

= J d~l'" d~p PP+l(~l' ... , ~,,)B(~l' ... ,~p), (10.20) 

where P is a real number ~ 0 and Pp+ 1 is a bounded 
Lebesgue-measurable function (p = 1, 2, ... ). The 
sequence p = (PP+l)pEN is an analytic correlation 
functional and 

(10.21) 

11. THE PROBLEM OF EXISTENCE OF PHASES 

As we have seen, statistical mechanics leads 
typically to consider configurations of a large number 
of points (Xl' .•. , xn) in a large region A(a) C R" 
satisfying conditions of the form V(a)-lA[X] I, 
where I shrinks to a point in the limit. The main 
objective of this paper was to show that, among 
these configurations, most satisfy other conditions 
of the same type, so that the correlations between 
the points of the configuration are strictly deter­
mined, and should be given by a correlation func­
tional. A typical result in this direction was given 
in Sec. 10. Of course one does not expect physically 
that to a given set of data of the form V(a)-l A (X] ~ 
E there will always correspond only one correlation 
functional, there may be several or even, for "un­
physical" data, none at all [for instance, in Eq. 
(6.28), the supremum may not be attained]. 

Let us now investigate the macroscopic aspect of a 
large configuration of points with correlations ap­
proximating those determined by an analytic func­
tional p. 

Proposition B: Let (aj);EN and (,,;),EN be sequences 
of elements of (R!), and R! 1'espectively, such that 
when j -'> (X) , then "; ~ (X) and "ila; ~ (X) tor i = 
1, .. , , v. Define 

Ai' = Ix: X + M; E A(a;)}. (11.2) 

For each j E N, let Xi = (Xil' ... ,Xi";) be a sequence 
of elements ot A~'. We assume that for each f E <5:, 

(11.3) 

where J.l. is the measure on m associated with an analytic 
correlation functional p and 

ni nf 

fx;(x) to + L L '" L t(x + Xii., ••• ,X + Xii ). 
pEN to-1 'p-l 11 

(11.4) 

Under the above conditions one can choose a sequence 
(Ci)iEN of elements ot (R!r such that 

I,im c; = + (X) for i = 1, ... ,ni c; < !";' (11.5) 
,-'" 
and for every real continuous function 'P with compact 
support in R q

, q E N*, and every q-tuple t, '" , r 
of elements of <5:, 

i,im <ti(f!j, ... ,f~J)('P) 
,~'" 

(11.6) 

where f. is defined by (8.26) and the measure 
t, (f\ ... , f") on R· is defined by 

(r;(r, ... ,r»('P) 

= V(a;)-l f dx 'P(f1/x), ... ,fxi(x», (11.7) 
A{a;) 

Notice that a sequence (X;);EN satisfies (11.3) 
for all <5: if it satisfies this condition for a suitable 
countable subset of <5:. One may in particular con­
struct (X;) j EN with" typical" configurations occuring 
in Proposition A. 

To prove Proposition B notice that all the 
moments of the measures t i (t J ••• J F) exist and, 
using a functional notation for measures we have 
for all TI '" r EN' , '<l , 

l,~ L~ dal ... L~ da. a~' .. , a~'(t;(J\ ... ,r» 
. (aI' .. , ,a.) = J.l.«f)0 r

, ® ... ® (fr)0r<). (11.8) 

Therefore 

. (aI' ... ,a.) = (Q', Q'WY' ... Q'(f·Y<Q'), (11.9) 

M; = Ix : -Kj < x' < K; for i 1 ... v} , " (11.1) and it is possible to choose (C;)j.N satisfying (11.5) 
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and such that 

lim 1'" dOll'" i~ 00" a~' ... a;'(!j(f!;, ... , f~i» 
1-(0 -co .... 

. (al"" ,a.) = (U', Q'(fly' ... Q'(f"Y'U'), (11.10) 

i.e., the moments of !j(f!jI ... ,f~J have limits which 
are, by the spectral theorem, the moments of the 
measure cp -t (U', cp(Q'W)"", Q'(f")fJ'». By our 
assumption that p is analytic this last measure is 
completely determined by its moments. 17 Proposition 
B follows then by application of Lemma A3 (the 
"second limit theorem" of statistics, see Appendix). 

The interpretation of (11.6) is easiest when ~' 
has a finite number d of dimensions. Let then 
(fJ:)15i5d be an orthonormal basis of ~' formed by 
eigenvectors of all the Q' (f), then (11.6) says that, 
in the limit of large j one may decompose AV into d 
large disjoint regions of volumes (fJ', U:)2Vj where the 
correlations between the points in X j are given by the 
measures !J.; on <5: such that 

p,j(f) = (fJL Q'(f)fJ~). (11.11) 

In particular, for q = 1, f E <5:, one sees that the 
coarse-grained density (f! i)x i will take essentially 
only d values, which are the densities corresponding 
to !J.I, ••• , !J.d' In other words, if~' has d dimensions, 
a physical system with correlation given by !J. will 
appear as a superposition of d different phases. This 
is true at least if d is finite. If d is infinite the situa­
tion is somewhat less clear. Notice that we expect 
d = <X> to arise physically from the various orienta­
tions of a crystal lattice in treating a physical system 
of particles with central interactions in crystal phase. 
This is however an accidental degeneracy. In general 
one expects d to be finite. A tentative explanation 
of this is the following. One expects that to the 
decomposition !J. = L~=l (fJ', fJD 2

!J.i corresponds a 
similar decomposition of the entropy (i.e., that 
boundary effects between different phases contribute 
negligibly to the entropy). If one could forget that 
not every correlation functional is analytic, one 
would then obtain that s(p) is linear in p on its 
convex set of definition. As we have seen in Sec. 10, 
in statistical mechanics p is typically solution of an 
extremum problem [there, to maximize s(p) - ,Bp(A)] 
for a function which we expect to be linear on a 
convex set, and therefore" in general" d = 1. For 
other ensembles than the grand canonical, one 
expects d to be small. 

17 See J. A. Shohat and J. D. Tamarkin, The Problem of 
Moments (American Mathematical Society, New York, 1943), 
p. 21, Theorem 1.12. 
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APPENDIX 

Lemma A1: Let F be a real function of v arguments 
m; E N*, 1 ~ i ~ v, such that for i = 1, '" , v: 

F(m l
, '" , m~ + m;, ... , mP

) 

2:: F(m., ... , m~, ... , m P
) 

+ F(m\ '" , m;, .. , , m P
). (AI) 

If supm <It.l m')-1 FCm) exists in R, the limit of 
(II:.1 mi)-l F(m) when m\ m2

, ••• , m P tend to 
infinity exists and is equal to 

sup (tr mi)-lF(m). 
m ,,-I 

This is an easy generalization of Exercise 98 in 
the first part of the first volume of the exercise book 
of P6lya and Szeg6!8 

Lemma A2: Let a E R!. If the real function f, 
defined in an open interval I of R, is increasing and 
satisfies the inequality 

f[CA' + A")/2] 2:: (1 - a)f(A') = at(A") (A2) 

for all A', A" E I such that A' < A", then f is con­
tinuous in I. 

Let A E I and E E R!. We define 

f-(A) = lim t(A - 1:), f+CA) = lim t(A + 1:). (A3) 
E-O E-O 

Taking A' = A - 21:, A" = A + I: we obtain from (A2) 

f-CA) 2:: (1 - ot)f-(A) + otf+CA); (A4) 

hence f - (A) 2:: f + CA). 

LemmaA3: Let the measures S'j 2:: 0 on R"Cq E N*) 
be defined for all j E N and have moments of all orders. 
We assume that there exists a measure t 2:: 0 on R" 
such that (using a functional notation for measures) 

li~ i~ 'dotl .. , i~ dot. ot~' ... ot:'tj(ot) 

18 G. P6lya and G. Szegii, Aufgaben und Lehrsatze am der 
Analysis (Springer-Verlag, Berlin, 1954), Vol. 1, 2nd ed. 
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for all r1, ••• , r. E N. Then, if r is determined by its 
moments, we have for any real continuous function cp 

with compact support in R" 

l}::! L"'", 001 ... L: da. cp(aM j(a) 

= L: dal ... L: 00. cp(a)r(a). (A6) 

JOURNAL OF MATHEMATICAL PHYSICS 

This IS simply the "second limit theorem" of 
statistics, which is however usually proved for 
q = 1. The one-dimensional proof given in Ref. 19, 
pp. 127-128, may however easily be extended to 
q > 1.20 

19 S. S.Wilks, Mathematical Statistics (John Wiley & Sons, 
Inc., New York, 1962). 

20 The author is indebted to H. G. Tucker for pointing 
this out to him. 
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A purely group theoretical treatment of interactions of relativistic particles is shown to be possible 
in the connection of a finite geometry of space-time. The S operators are constructed by means of 
the reductions of the irreducible unitary representations of the relativity group of space-time. The 
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I. GENERAL STRUCTURE OF THE FOCK-HILBERT 
SPACE 

CONSIDER the irreducible manifolds H (M, S, Q) 
of the Dieudonne group 5)' (cf. Paper I of this 

series).l Let us denote the labels (M, S, Q) by a 
single index X which then represents the particle 
species. A given manifold H}. contains all the single­
particle states of a particle of the species X, and this 
space carries an irreducible unitary representation 
U}. of the Dieudonne group 5)'. The space H~ carry­
ing the representation Ut contains the single­
particle states of the antiparticle X. 

For any boson or fermion (particle or antiparticle) 
species X we introduce a larger space K). by 

K). = Ho(X) EB S(® H).) 
.. -1 

if X is a boson species, 
(1) 

h(}') 

K). = Ho(X) EB A(® H).) 

if X is a fermion species. 

Here S and A are the symmetry and the antisym­
metry operators, respectively, in the n-fold tensor 

1 Y. Ahmavaara, J. Math. Phys. 5,87 (1964). 

spaces 
®H). 

in question (for their definition, see Greub2
). The 

space HoCX) is a one-dimensional linear space carry­
ing the identity representation of 5)'. 

Notice that the series of K). in (1) contains in the 
fermion case only a finite number of terms. This is 
a consequence of the finitness of the dimensionality 
of the space H). in finite geometry, and the number 
heX) is exactly the number of the dimensions of H). 
Ccf. Greub2

); 

h(A) = dim H).. (2) 

Consider the spaces 

K = ®K)., H = EBH)., A E 0, (3) 
). ). 

where 0 is a finite set of particle species. The space K 
is the general Fock-Hilbert space3 which contains 
the states of all the systems composed of the particles 
A E 0, and in which the interactions of these parti­
cles are to be described. The space H is the total 
single-particle space of all the particles X E o. 

2 W. Greub, Linear Algebra (Springer-Verlag, Berlin, 
1963). 

Z V. Fock, Z. Physik '75, 622 (1932). 
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for all r1, ••• , r. E N. Then, if r is determined by its 
moments, we have for any real continuous function cp 

with compact support in R" 

l}::! L"'", 001 ... L: da. cp(aM j(a) 

= L: dal ... L: 00. cp(a)r(a). (A6) 

JOURNAL OF MATHEMATICAL PHYSICS 

This IS simply the "second limit theorem" of 
statistics, which is however usually proved for 
q = 1. The one-dimensional proof given in Ref. 19, 
pp. 127-128, may however easily be extended to 
q > 1.20 

19 S. S.Wilks, Mathematical Statistics (John Wiley & Sons, 
Inc., New York, 1962). 

20 The author is indebted to H. G. Tucker for pointing 
this out to him. 
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RELATIVISTIC QUANTUM THEORY. II 221 

Introducing a projection operator P which sym­
metrizes with respect to identical bosons, and anti­
symmetrizes with respect to identical fermions, one 
can evaluate K in terms of the single-particle 
spaceH: 

K = K(I) EB H EBP(H (8) H) 

EBP(H (8) H (8) H) EB ... (4) 
Here 

" 
P«(8)H) 

is composed of all the n-particle states of the parti­
cles A E 0, and the space 

K(I) = (8)Ho(>') 
A 

contains only the mathematical vacuum state ~o. 
We introduce complete orthonormal bases in the 

spaces H>. and K>., and denote them, respectively, 
as follows: 

H). : I~j(x); j = 1,2, ... ,h(X)}, 

K). : Itn().); n(X) E ~).}. 

Here ~). is the set of all the sequences 

(5) 

n(X) = (nl(X), n2(X), •.• ,n~().)(X», nj(>');::: 0, 

where the integer n;(X) is the number of the particles 
of the single-particle state ~;(X) present in the state 
e,,().). The number 

thus gives the total number of particles present in 
the state ~"(A)' The set ~). becomes a semigroup by 
the definition of addition of sequences: 

n(>.) + n'(X) 

(6) 

In particular, we define the sequences 

and 
{).(X) = (0 '" 0 1 0 '" 0) 

I " , " , (7) 
O(X) = (0, 0, ... ,0), 

where 1 is in the jth place in the sequence {);(A), 
while O(A) is the sequence of zeros. 

After these definitions we have 

heAl E Ho(X), 

~8j().) = ~;(>.) E H A, 
2 

bj().)+h(A) "-'P(~i(X)'<I>k(X» E P«(8)HA) , (8) 
n h()') 

i;"m ,......, P( n <I> ; (X» E P«(8)H}..) if 2: n;(X) = n. 
i i-l 

Here P is A for a fermionic X, and S for a bosonic >.. 

A complete basis of the total Fock-Hilbert space 
K is now given by the tensorial product states of 
the form 

<I>n().) .m(A'). ", = tn(A)/;m(A') ,.. (9) 

Evidently, the state (9) belongs to the n-particle 
space 

" h().) h(A') 

P«(8)H) if 2: n;(X) + 2: mk(X') + ... = n. 
j~l k-l 

In particular, the normalized mathematical vacuum 
state is represented by 

<I>o.o ..... o = IT ~O(A)' 
A 

(10) 

A complete set of operators in the space K is 
obtained by introducing the set of the creation and 
the annihilation operators 

{a;(X), a;(>.); j = 1,2, ... , heX); A E O} 

by the defining formulas 

a;(X)<I> .. (A) .... = C).(j, n)<I> .. ()')Hf().)"" , 

_ {C).(j, n - {);)~<I>"().)-~f().)"" 
aj(X)4>,,().}.',. - If nj(X) > 0 

o if n;(X) = O. 

Here 

{

en; + I)' for a boson A 

C( ' ) = ~ (_I)",().)+·"+"f().) 1, n UO'''f().) 

for a fermion X. 

(11) 

(12) 

Evidently, the operators a;(A) and a;(X) of a fermonic 
A are proper, bounded operators of K, while those 
of a bosonic A are proper but nonbounded. This is 
due to the fact that the bosonic occupation numbers 
have no upper limit. 

The transformation properties of the single­
particle states of a particle and its antiparticle imply 
those of the respective creation and the annihilation 
operators in the following way: 

t 
the a;(X) carry U)., 

the a;(X) carry Ut, 

the a;(X) carry Ut, 

the a;(X) carry U).. 

(13) 

II. THE CONSTRUCTION OF THE SCATTERING 
OPERATOR 

Mathematically speaking, a "scattering operator" 
S is a unitary operator of K, composed of the crea-
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tion and the annihilation operators, and invariant 
with respect to the relativity group. Physically, a 
given S describes interaction between the particle 
species whose creation and annihilation operators 
are involved in this particular S. 

Let us see, by the way of a simple example, how a 
purely group theoretical construction leads to a 
unique S operator for the description of an inter­
action between given particle species. The following 
construction works well only in finite geometry-it 
should be kept in mind that in a finite geometry 
the observable states of momentum have a nontrivial 
distribution of geometrical origin (cf. Paper I, Sec. V). 

Consider two fermion species a and b, and a boson 
species w, such that Ii ~ a, 5 ~ b, and w ~ w. Neg­
lecting for a while the contributions of the anti­
particles to the interaction between a, b, and w the 
Fock-Hilbert space of interaction of these particle 
species is simply 

(14) 

For the construction of an S operator one has at 
his disposal the following creation and annihilation 
operators with the respective irreducible unitary 
representations of the relativity group according to 
which they transform: 

the a; : Ua , the aj : U~, 

the b; : U b , the bk : Ut, (15) 

the wi : U." the WI : U!. 

Let us assume that the reduction formula 

(16) 

holds true. It then follows from (15) and (16) that 
the operator 

L: L: g(jkl)ajb: = Cll 
j k 

where the g(jkl) are the reduction coefficients, trans­
forms with respect to the relativity group 5)' just 
like the annihilation operator WI. Accordingly, the 
operator 

(17) 

is invariant with respect to the transformations of 
the relativity group. 

The "vertex operator" f} of (17) gives rise to a 
fundamental process, or a "coupling" a ~ b + W 

between the particle species a, b, and w. 
By complex conjugation (16) gives at once another 

reduction formula holding good simultaneously with 
(16), viz., 

(18) 

This gives the vertex operator f} t and the inverted 
coupling a +- b + w. 

From the two vertex operators f} and f} t one can 
already construct a scattering operator, the simplest 
possible one. To this end one has to combine first the 
vertex operators to a Hermitian one: 

o = cf} + c*f}t. (19) 

Here c is a complex "coupling constant." This 
Hermitian gives the scattering operator 

S = ei9 = 1 + iO+ (2!)-li2
02 + (3 !r1i3 03 + .. , . (20) 

This scattering operator describes all those processes 
of interaction between the species a, b, and w, which 
are due to the coupling scheme a ~ b + w, and to 
this scheme only. 

Note: One may ask why it is just in a finite geom­
etry that one can apply the purely group theoretical 
construction of S operator illustrated above. In 
fact, the reduction formulas of the above kind can 
be written down even for the irreducible unitary 
representations of the relativity group (the inhomo­
geneous Lorentz group) of continuous space-time. 

However, the group theoretical method cannot 
be applied in the case of continuous topology, since 
it would in continuous topology lead to S-matrix 
elements whose dependence on the momenta of the 
particles were of a trivial kind. Indeed, the relativis­
tic invariance implies, as far as the momenta are 
concerned, just the law of conservation of momen­
tum, and nothing more. Thus the complicated depen­
dence of interactions on the momenta, apparent in 
the experimental results, could not be thought to be 
explained by a purely group theoretical formalism 
in continuous topology. 

In continuous topology of space-time (in the 
quantum field approach), the dilemma of the momen­
tum dependence of interactions is attacked about 
in the following way.4 One decomposes the irreduci­
ble unitary representations U of the relativity group 
to a direct product 

(21) 

where M is a spinor representation of the homo­
geneous Lorentz group.6 Then one applies the reduc­
tion formulas for the spinor representations only. 
This gives Lorentz-invariant vertex operators, say, 

4 What follows is the consideration of a simple special 
case. For a more complete analysis of the group structure of 
quantum field theory see Y. Ahmavaara, Ann. Acad. Sci. 
Fennicae Ser. A VI, No. 106 (1962). 

6 In general, quantum field theory implies only the assump­
tion that there is a homomorphism T <8> M .:; U E9 U*. 
see Ref. 4, p. 18. 
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i)(Pa, Pb, p.,), which still depend on the momenta of 
the particles in question. 

Thus only a partial reduction, viz., a reduction of 
the part M of the total representation U, is applied 
in quantum field theory. This is the "postulate of 
the partial reduction" which is implied in all quan­
tum field theories (c£., Ahmavaara Ref. 4, pp. 17-18). 

The rest of the construction of S operator is 
performed, in quantum field theory, by using another 
technique of constructing invariants, viz., the method 
invariant integration (for a closer analysis of the 
combination of the two techniques in current quan­
tum field theories see Ahmavaara, Ref. 4). By 
Lorentz-invariant integration over the momentum 
space one obtains the final vertex operators which 
are invariant with respect to the translations of 
space-time too. The integrals involve, however, 
arbitrary Lorentz-invariant functions. For the 
determination of these functions one can try to 
apply either (1) the classical dynamical Hamilton­
Lagrange formalism (the historical quantum field 
theory which is inconsistent mathematically), or (2) 
the condition of umicrocausality" (the axiomatic 
quantum field theory of Haag, Lehmann, Wightman, 
et al.6

), or (3) the condition of "analyticity" (the 
pure S-matrix theory of Chew et aC). 

In a finite geometry the group theoretical reduction 
method can be used in its full capacity, and not only 
"partially." It involves no arbitrary functions. The 
dependence of the S-matrix elements on the mo­
menta will not be a trivial one. This is due to the 
fact that there is in this case a nontrivial distribution 
of the observable states of momentum. This distribu­
tion is a consequence of the condition of "Euclid­
icity" which must be imposed on the observable 
4-momenta in a finite geometry (cf. Paper I, Sec. V). 

The group theoretical method of constructing 
the S operators thus implies the idea that the mo­
mentum dependence of the interactions of relativistic 
particles cannot be explained, in general, (1) by a 
variational principle, nor (2) by microcausality, nor 
(3) by analyticity, but by the geometrical relations 
of Euclidicity characteristic to a finite geometry of 
space-time. 

m. THE CALCULATION OF THE FEYNMAN GRAPHS 

Let us see how the Feynman graphs are evaluated 
by the group theoretical method. The graphs as-

e L. Klein, The Dispersion Relations and the Abstract 
Approach to Field Theory (Gordon and Breach, Inc., New 
York, 1961). 

1.0. 9hew, S-Matrix Theory of Strong Interactions (W. A. 
BenJamm, Inc., New York, 1962). 

FIG. 1. 

sociated with the scattering operator (20) may serve 
as examples. 

Consider, for instance, the contribution of the 
second-order graph of Fig. 1 to the respective mat­
rix element of fl. Using the Dirac notation for 
states, by writing 

<pi(a) = 11), 

the matrix element in question is <ilkl\ 82 lizk2}' 
As indicated in Fig. 1 the lower vertex of the graph 

is described by the operator i), and the upper vertex 
by the operator i)t, the whole graph being described 
by the product i)ti). The contribution to the matrix 
element is calculated by using the following simple 
rules: (1) Write down the relevant product of the 
reduction coefficients, provided by the correct sub­
scripts read from the graph, g*(jlk2l)g(j2kll). (2) 
Sum over the index l of the virtual boson states. 
(3) Multiply by the relevant coupling constants c 
andc*. (4) Check whether there appear two (or more) 
simultaneous identical fermions in the course of the 
process-they must be excluded, of course; in the 
present case, the contribution is ~O only if kl ~ k2 ; 

this gives rise to the Kronecker factor 1 - lh,k. in 
the matrix element. (5) Check whether there appear 
two (or more) simultaneous identical bosons in the 
course of the process; this is not the case now, since 
there is only one virtual boson. The final result 
thus is 

(ilk! I 82 /jak2) = cc*(l - Ok,k.) 

X L: g*Vtk2l)g(i2kll). (22) 
I 

As an example of a graph where also the rule (5) 
has application, consider the fourth-order "crossing 
graph" of Fig. 2. This graph is described by the 
product i)ti)ti)i) of the vertex operators. The same 
computational steps as before give now the following: 
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FIG. 2. 

(1) The product of the relevant reduction coef­
ficients is 

(2) The summation over the virtual states gives 

EEEE. 
Ie Ie' l l' 

(3) The relevant product of the coupling coefficients 
is ccc*c* = /c/ 4. (4) Initially, there are two fermions 
ja and j4, and finally two fermions jl and j2-there 
must be ja ,e j4 and jl ,e j2 which is indicated by the 
respective coefficients 1 - Did. and 1 - 0i.i, in the 
matrix element. (5) Between the second and the 
third vertex processes there are two bosons land [' 
simultaneously present; in the case that l' = 1 the 
creation and the annihilation of the second boson 
give together a coefficient V2 V2 = 2 to the re­
spective matrix element. Accordingly, the total 
result can be written 

(i.i2/ (/ /iai4) = /c/4 (1 - oi,;.)(l - 0;,;) 

X L: L: I L: L: g*(jlkl')g*(j2k'l)g(jak 'l')g(j4kl) 
k/~k Ie l'~l l 

Using the rules (1)-(5) one can easily evaluate 
any Feynman graph connected with the simple 
scattering operator (20) of our example and, in 
fact, any graph of any scattering operator con­
structed by the group theoretical method. In general 
the rules (1)-(5) give only the absolute value of the 
matrix element in question. The sign must be deter­
mined separately by the formula (12). 

IV. THE DESCRIPTION OF THE NUCLEAR, ELEC­
TROMAGNETIC, AND WEAK INTERACTIONS 

The example of 3-particle coupling considered 
above was oversimplified: for instance, the contribu­
tions of the antiparticles were neglected. Let us now 
see what kinds of couplings are needed for the de­
scription of realistic physical forces in finite geometry. 

Let us begin by the two fermion species a and b, 
and the boson species w, considered above. At first 
we again make the assumption a ,e a, h ,e b, and 
W ,e w, as well as a ,e b. Taking now the antiparticles 
too into account the Fock-Hilbert space of the 
complete set (a, b, w, a, h, w) of particle and anti­
particle species is given by 

For the construction of the scattering operator 
one has now at his disposal the following six kinds 
of creation and annihilation operators with their 
respective modes of transformation: 

the a;} : U. the a;} : U! 

the a; the a; 

the ~;} : Ub the ~:} : Ut (25) 
the bk the bk 

thew:}:u .. thewI1:U!. 

the w, the wi J 
The reduction formula (the same as before) 

(26) 

now gives five vertex operators describing vertices 
where two particles are converted to one particle, 
viz., the following ones: 

if, = L: g(jkl)a;b:wi (a ~ b + w) 
ikl 

if2 = L: g(jkl)aihkw: (a + £ ~w) 
ikl 

f}a = L: g(jkl)a;hkw; (h ~ a + w) (27) 
jkl 

if4 = L: g(jkl)aib;wl (a + w ~ b) 
ikl 

ifs = L: g(jkl)a;6kwl (6 + w ~ a). 
ikl 

The complex conjugation of (26) yields still five 
vertex operators, viz., the adjoints of (27), and the 
respective time-inverted couplings. The scattering 
operator corresponding to the reduction (26) is now 
given by 

5 

s = ei~, 'T} = L: (c.if. + c~if:). (28) .-1 
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If one counts fermions by a "fermion number" 
defined to be + 1 for the fermionic particles and -1 
for the fermionic antiparticles, then the couplings 
involved in (28) can all be represented by the two 
couplings 

a-b+w wd b-a+~ ~~ 

plus the law of conservation of fermion number. 
The nuclear force between protons and neutrons is 

generally assumed to be due to the couplings 
p - n + 71"+ and n - p + 71"- (there being 71"- = ir+), 
and to the couplings obtained from these by the 
law of conservation of baryon (=heavy fermion) 
number. Such a coupling scheme is an example 
of (29). Accordingly, a reduction formula of the type 
(26) and the scattering operator defined by (27)-(28) 
give the theory of this nuclear force in a finite 
geometry. Other examples of this coupling are among 
those which are suggested to hold for strong inter­
actions of the "strange particles", for instance, 
the A couplings: 

n _ A + KO and A _ n + KO 

p - A + K+ and A - P + K-

2;+- - A + 71"+- and A - 2;+- + 71"-+. 

In particular, it can happen that ~ = w or, what 
is the same, that there is an equivalence 

U., ""' U~. (30) 

Of course, the Fock-Hilbert space K of (24) now 
must be reduced to a fivefold direct product only, 
the factor Kg being left out. The vertex operators 
are again those of (27), except that in t'J4 and in t'Js 
the operators ~I must be replaced by the WI' The 
coupling scheme is now given by 

a-b+w wd b-a+w ~D 

plus the law of conservation of fermion number. This 
kind of coupling is suggested to hold, for instance, 
between the neutral A and 2; particles: 

2;0 _ A + 71"0 and A _ 2;0 + 71"0. 

Let us now make the restriction that a = b. From 
the corresponding reduction formula 

(32) 

and from its complex conjugate it follows that 
U", '" U~ or ~ = w. Accordingly, a = b imples 
w = w. 

The Fock-Hilbert space of interaction of a, a, 
and w of course reduces to the threefold direct 
product of K a, K a, and K.,. The number of vertex 

operators is reduced from 10 to 6. The formula (32) 
gives 

t'J~ = ! L g(jkl)(a;a; + a;a;)wl (a~ a + w) 
;kl 

(a + a ~ w) (33) 

(a ~ a + w). 

A symmetrization with respect to the order of a; 
and a!, and of a; and a! is taken into account. The 
complex conjugate formula· gives the adjoint vertex 
operators. The S operator is thus given by 

3 

s = ei~', 71' = L (c~t'J~ + c~*t'J~*). (34) .-1 
The couplings involved in (33)-(34) are repre­

sented by 

(35) 

plus the law of conservation of fermion number. 
Physical examples of this kind of coupling scheme 
are the electromagnetic couplings e - e + 'Y (between 
electrons and photons), and p - p + 'Y (between 
protons and photons), and the nuclear couplings 
n - n + 71"0 (between neutrons and neutral pions), 
and p _ p + 71"0 (between protons and neutral 
pions), there being 1 = 'Y and ir° = 71"0. Accordingly, 
the electromagnetic forces and the nuclear forces 
between neutrons themselves and protons them­
selves must in finite geometry be described by reduc­
tion formula of the type (32), and by the respective 
S operator (34). 

Let us now consider four fermion species a, b, c, 
and d, and a reduction formula of the type 

U~ @ Ub ""' (U~ @ Ud) EB ... . (36) 

This corresponds to the simultaneous validity of the 
following reductions of the direct product repre­
sentations to their irreducible components: 

(37) 
U~ @ Ub ""' (EBUA) EB "', A E no. 

A 

Notice that here it is not sufficient that the decom­
positions of U~ @ Ub and U~ @ Ud have just a 
common term say, U." in their decompositions 
but it is required that all the irreducible components 
of U~ @ Ud are among the irreducible components 
of U~ @ Ub • 

The Fock-Hilbert space of interactions of the 
four particle and four antiparticle species is, of 
course, an eightfold direct product space. It follows 
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from the reduction formula (36) that the operators 

L h(jkln)ajb! = AI .. , 
jk 

where the h(jkln) are the reduction coefficients, 
transform just like the products cld!. Accordingly, 
the operator 

L h(jkln)ajb!c;d .. = X (38) 
ikln 

is invariant. 
Other vertex operators are obtained from (38) by 

replacing creation and annihilation operators by 
antiparticle annihilation and creation operators, 
respectively, and by taking the adjoints. The scat­
tering operator will be given by 

x = L (j.x. + gx:). (39) . 
This scattering operator, and the underlying 

reduction formula (36), correspond to a direct four­
particle coupling represented by 

(40) 

plus the couplings obtained from this by the law of 
conservation of fermion number. Physical examples 
of this kind of couplings are the couplings describing 
the weak interactions. Accordingly, one must assume 
that the weak interactions are described by reduc­
tions of the type (36), and by respective S operators 
(40), in finite geometry. 

Evidently, one can continue the process of con­
structing coupling schemes to higher orders of (even 
weaker?) direct n-particle couplings. The present 
physics has not found their traces in experiments, 
however, with the exception of one more coupling 
describing the gravitational interaction. If the spin 
of the graviton is 2, the gravitational interaction 
could be described for instance by a direct five­
particle coupling between the graviton and four ferm­
ions of spin t. Such a coupling has not been studied 
in physics so far. 

N otel: In conventional quantum theory con­
nected with continuous topology of space-time one 
has been accustomed to describe the strength of 
interaction by the magnitude of the respective 
coupling constants. It follows that a quantitative 
theory has been possible only for the electromagnetic 
and for the weak interactions. In the case of strong 
interactions, one must substitute coupling con­
stants so large that the exponential series of S 
operator diverges, each of the successive terms giving 
contributions larger than the previous terms. 

In finite geometry no difficulty of this kind seems 
necessary. One must remind that the experimental 

measure of the strengthness of interaction is the 
inverted lifetime or, what is the same, the so-called 
transition rate. This depends not only on the magni­
tude of the S-matrix element in question but also 
on the number of the final states per unit energy 
interval. In finite geometry, there is a nontrivial 
distribution of the observable states of momentum 
(cf. Paper I, Sec. V) which implies also a nontrivial 
spectrum of energy for each mass value. 

The energy spectrum depends on the mass of the 
particle in a sensitive way. As an over-all rule, how­
ever, one can state that the density of states per unit 
energy tends to grow with increasing rest mass (for 
the masses m ~ 0). Accordingly, interactions be­
tween heavy particles tend to be stronger than those 
between light particles in finite geometry. If the 
energy spectrum is dominating for the strengthness 
of interactions in finite geometry, then even small 
coupling constants may lead to strong interactions, 
and a quantitative theory of strong interactions 
can be based on an exponential S operator. 

There is another effect due to the density of states 
in finite geometry. Evidently, the three-particle inter­
actions are of observable magnitude for those parti­
cle species a, b, and w, whose irreducible state mani­
folds H a, H b, and H w contain a very large number of 
observable states of momentum. Accordingly, they 
are bound to occur between particles representing 
the peaks of the mass spectrum. On the other hand, 
the four-particle interactions (or, a fortiori, any n­
particle interactions for n 2:: 4) based on the reduc­
tion formula (36) necessarily involve, as is indicated 
by (37), a large number of "intermediate" particle 
species A. These species A are associated with mass 
values which probably are rather randomly distrib­
uted, and are by no means just the peaks of the mass 
spectrum. Accordingly, the density of states con­
nected with a four-particle coupling must be assumed 
very low in comparison with the observable three­
particle interactions. Thus one could qualitatively 
understand why the four-particle couplings already 
describe very weak interactions. Of course, this is an 
unproved suggestion. 

Note 2: Another remark to be made here concerns 
the consistency of the present formalism. As soon 
as antiparticles too are involved in the Fock-Hilbert 
space this space has, evidently, a degenerated 
vacuum state. In other words, there are elements of 
K other than the absolute vacuum state <1>0,0, ••• 

which are invariant in the relativity group. Let us 
call these elements "relativistic vacuum states," and 
consider them in some detail. 

Since the single-particle states of a particle and 
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its antiparticle transform contravariantly with re­
spect to one another, there is a relativistic vacuum 
state for every pair of particle-antiparticle species 
involved in the interaction. In the K space (24) of 
our example there are thus, in general, three rela­
tivistic vacuum states of this kind, viz. 

:E <pj(a)<l\(a) = <po(aa) , 
j 

spanned by these two invariant three-particle states 
be denoted by K(3). Evidently, 

K(3) CP(H®H®H). 

The basic relativistic vacuum spaces K(2) and 
K(3) generate further relativistic vacuum spaces by 
their direct products and direct sums: 

:E <Pk(b)<Pk(b) = <po(bb) , 
k 

(41) K(4) = K(2) ® K(2) C P(®H), 

K(5) = K(2) (8) K(3) C P«(8)H), 

K(6) = (K(2) (8) K(2) ® K(2» 
Let the "two-particle vacuum space" spanned by 
these three invariant two-particle states be denoted 
by K(2). Evidently, K(2) C P(H (8) H). 

(44) 

Another type of relativistic vacuum states is ob­
tained by means of a reduction formula. For instance, 
it follows from the reduction formula (26) of our 
example that the two-particle states 

:E g(jkl)<pj(a)<pk(b) = 'l',(w), 
jk (42) 

:E g*(jkl)<pj(a)<pk(b) = 'l',(w) 
jk 

transform like the single-particle states <PICW) and 
<PI (w), respectively. Thus the three-particle states 

:E g(jkl)<P;(ii)<Pk(b)<p,(w) = <po(abw) , 
ikl 

:E g*(jkl)<p;(a)<pk(b)<p,(w) = <po(abw) 
(43) 

ikl 

are invariant. Let the "three-particle vacuum space" 

6 

EB (K(3) (8) K(3» C P(®H), etc. 

The total relativistic vacuum is given by the direct 
sum 

.Ko = K(2) EB K(3) EB K(4) EB ... . (45) 

The existence of a degenerated vacuum implies, 
however, no inconsistency in the physical interpre­
tation of quantum states. This is due to the facts 
that (1) no combination of the observable states 
is a vacuum state, and (2) any vacuum state can not 
either be reached by a Lorentz transformation from 
given observable states. 

On the other hand, the existence of relativistic 
vacuum states implies no inconsistency in the mathe­
matical formalism either, since there is still only one 
state upon which the creation and the annihilation 
operators operate as on the "vacuum." 
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Using the ideas of information theory, it is pointed out that the Gaussian ensemble for random 
Hermitian matrices can be characterized as the "most random" ensemble of these matrices. Pursuing 
the same characterization for positive matrices, we are led in a natural way to the definition of the 
exponential ensemble. Transforming to a representation of eigenvectors and eigenvalues, the joint 
distribution function for the eigenvalues of positive Hermitian matrices is found for this ensemble. 
The asymptotic single-level density formula is derived, using a semiclassical model. It is found that the 
density is convex from below over most of the domain of eigenvalues. Since this is similar to the 
exponential dependence expected for nuclear spectra, the density is examined in a region near the 
level taken to correspond with the lowest nuclear level. It turns out, however, that the density is 
concave from below near this level, and that a large number of levels are contained in this concave 
region. Hence the exponential ensemble does not fairly represent nuclear energy levels, at least in 
this region. Various changes are made in the measure on the matrix ensemble to determine to what 
extent the level density depends on this measure. It is seen that the level density graph retains a 
characteristic shape for a wide variety of measures. The relationship of the li~iting behavior of the 
level density for positive matrices to the semicircle law is noted. 

INTRODUCTION 

THERE is a hypothesis due to Wigner, I that 
one ought to be able to explain statistical rela­

tionships observed for the levels of atomic nuclei, 
by a mathematical treatment of distributions derived 
from various ensembles of matrices. This led to 
interesting mathematics,2 as well as an apparently 
universal law of physics,a the nearest-neighbor 
spacing formula, which gives the observed repulsion 
of energy levels, and has been found to fit data from 
atomic as well as nuclear spectra. The spacing law 
can be derived from the Gaussian ensemble. 

We will state formulas which are correct for 
Hermitian matrices, rather than the restricted case 
of real symmetric matrices. The latter are appro­
priate for physical systems such as nuclei, which are 
invariant with respect to time reversal. However, 
the Hermitian matrices should give results which 
correspond closely with the real symmetric case.4 

For the Gaussian ensemble, the probability of 

* This work was supported in part by the U. S. Atomic 
Energy Commission. 

t Present address: State University of New York at Stony 
Brook, Stony Brook, New York. 

1 E. P. Wigner, Proceedings of the Gatlinburg Conference 
on Neutron Physics by Time of Flight, ORNL 2309, P. 67, 
1956 (unpublished). See also Ref. 25. 

2 F. J. Dyson, J. Math. Phys. 3, 140 (1962). 
3 N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 

(1960). 
4 M. L. Mehta and M. Gaudin, Nucl. Phys. 18,420 (1960). 

The formula derived by Mehta and Gaudin for the single 
level density for the real case is the same as Eq. (4) this paper, 
for the Hermitian case, except for normalization, and the 
location of the end of the semicircle. The nearest neighbor 
spacing for very small spacings in the real symmetric case 
is proportional to X, the spacing distance, while it is pro­
portional to X' in the Hermitian case. See Ref. ISb and 25. 

finding a matrix with elements near the elements of a 
given n by n matrix H, is given by 

Dn(H) dH = (211"u2 r(n'/2)2-(n/2) 

X exp [-Tr (H2)/4u2] dH. (1) 

We let the ijth element of H be given by two real 
numbers, rand s. 

h;; = rij + is. j, 
r,j = rji , 

(2) 
S'j = -Sil. 

It is convenient to relabel the n2 real parameters of 
H as follows. The set {Xl, X2 , ••• , Xn} denote the n 
diagonal elements rii. The set 

denote the remaining rij with i less than j. The set 
{xn (n+1l/2+1, Xn (n+l)/2+2 ... x",} correspond to the 
n(n - 1)/2 numbers Si; with i less than j. With this 
notation, dH is given by 

(3) 

Rosenweig and PorterS proved for the real case, 
that if one assumes: (1) The density function is 
invariant under real orthogonal transformations; 
(2) The various matrix elements are statistically 
independent: then one must have (1) as the measure. 
The first requirement is a consequence of the fact 
that we have no reason for preferring one orthogonal 
basis to another. The two requirements taken to­
gether, give a nice mathematical characterization of 

• C. E. Porter and N. Rosenzweig, Ann. Acad. Sci. Finnicae 
Ser. A VI, 44 (1960). 

228 
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the ensemble, but there is no compelling reason from 
physics to keep the second. We will drop it in this 
paper. 

Equation (1) leads to the semicircle law for the 
asymptotic single eigenvalue distribution 

nP,.(e) = (ljS'Jru2)(Snu2 
- l)! for e2 < Snu2

, (4a) 

nP .. (e) = 0 for e 2 ~ Snu 2
• (4b) 

Equation (4a) has a graph which is concave from 
below, while one would expect for nuclear spectra 
that the area above the graph of the density should 
be convex, as it would be for an exponential func­
tion.6 One might expect that an exact calculation in 
the region of transition to the tail of the distribution, 
[i.e., near e = - (Snu2)!] would show this property. 
It was shown/ however, that the number of roots 
in this region is of the order of 2, even when the 
dimension of the matrices becomes very large. In 
this paper we will show how a level density which is 
convex over most of the domain of the eigenvalues 
can come about. 

A different characterization of (1) exists. Suppose 
we define a density function on the space of Hermi­
tian matrices subject to the conditions 

J .. , J D(H) dH = 1, (5a) 

isn 

i>n 
(5b) 

J ... J x,x;D(H) dH = 0 for i:;t: j. (5c) 

The limits on all integrals are (- ex> , ex» unless 
otherwise noted. We define an entropy function on 
our matrix space by 

s == -J ... J D(H) log [D(H)] dH. (6) 

We will call the ensemble given by the function D (H) 
which maximizes the entropy S subject to condi­
tions (5), the "most random" ensemble. Shannon8 

formulated and solved this problem for slightly more 
general conditions than we require for our matrix 
ensemble. The specialization to our case gives (1). 

We thus have an independent characterization of 
the Gaussian ensemble. We would like to see what 
we obtain for the "most random" ensemble when 
we restrict consideration to only positive, or only 
negative matrices, and our preliminary information 

G T. Ericson, Phil. Mag. Suppl. 9, 425 (1960). 
7 B. Bronk, J. Math. Phys. 5, 215 (1964). 
8 C. E. Shannon, Bell System Tech. J. 27, 629 (1948). 

consists of a common mean for all the diagonal 
elements. We will later compare the density of 
eigenvalues near the eigenvalue which is largest in 
magnitude, with the density of nuclear energy levels 
near the ground state. Therefore, at that time, we 
will have in mind negative Hermitian matrices. We 
find it easier, however, to phrase the discussion for 
positive matrices. Since the transformation from one 
case to the other simply amounts to placing a minus 
sign in front of the matrix and its eigenvalues, we will 
speak hereafter in terms of positive matrices. 

The set of all complex matrices A is mapped onto 
the set of all positive Hermitian H by the trans­
formation 

A ~ AA+. (7) 

This is because any positive H can be written 

H = UEU+ = UE!VV+E!U+. (S) 

Here E is the diagonal matrix of the eigenvalues of 
H, and E! contains the positive square roots of these 
numbers. U is a unitary matrix, the columns of 
which are the eigenvectors of H. V is an arbitrary 
unitary matri.x. 

Let the elements of an arbitrary complex matrix 
A be given by aij + ib" where a,; and' bij are real 
numbers. Let D(AA +)dA be the probability for 
finding any matrix H which can be formed by the 
product (A' A'+) where the real and imaginary parts 
of the elements of A' are in neighborhoods around 
the corresponding parameters for A, and 

dA == dall da12 ... dann dbll db12 ••• db..... (9) 

We point out that while our ensemble consists of 
the matrices H = AA +, we are taking as our sample 
space the set of all complex matrices A, so that 
every H can be obtained in many ways. In this case 
we will not have a density function :n(H) calculated 
so that the number of matrices around H with the 
parameterization (2), is given as :n(H)dH where dH 
is given by (3). 

We define the entropy S by 

S == - J ... J D(AA +) log [D(AA +)] dA. (10) 

We would like to maximize S subject to 

J ... J D(AA +) dA = 1, (lla) 

J ... J (AA +) .. D(AA +) dA = JJ.. (llb) 

Varying D, we find the condition for stationarity 
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ofs 
oD{-In D(AA+) 

-- 1 + C' + L c,(AA+),,} = 0, (12) 
• 

and since oD is an arbitrary variation, we obtain 

D(AA+) = C- 1 exp [- 2: c.(A",4.+) .. ]. (13) 
i 

C' and c/ are Lagrange multipliers corresponding 
to (11), Substituting D into (l1a), we have the 
product of 2n2 Gaussian integrals which are evalu­
ated to give 

(14a) 

Similarly, evaluation of the n integrals (l1b) gives 

2n C-1 iI (!!)" = p.. (14b) 
2Ci i-I Ci 

It follows that 

Cf = nip., j = 1, ... n; C-1 = (nlp.1r)"'. 

Setting p. equal to n for simplicity, 

D(AA +) = (1rr"· exp (-Tl' (AA +)] 

(15) 

(16) 

is the Hmost random" ensemble for positive matrices 
when the diagonal elements have a mean equal to 
the dimension of the matrix. Notice that although 
our preliminary information as given in Eq. (llb) 
is not independent of the coordinate system, the 
form of D which we arrive at is invariant when A 
is subjected to a unitary transformation. This is 
because the Jacobian of such a transformation is 
one.!! We also notice from Eq. (16) that D is every­
where less than one and therefore S is positive. 

We find it interesting to consider a more general 
measure, still invariant under unitary transforma­
tions, which includes (16) as the simplest case. 

D ... ,,(AA +) = C:,l .. 

X exp [-Tr (AA +)][det (AA +)]", (17) 

C ... fZ is a constant to be determined later. From (17) 
and (lla) we obtain 

0 ... 0 = (7r T' I (18) 

a is a real parameter which we restrict to be greater 
than minus one, and much less than the dimension 
of H. 

• For example, B. Bronk, thesis, Princeton University 
(1964). The Jacobian is explicitly calculated in Chap. 4. 

2. THE n-LEVEL JOINT DISTRIBUTION FUNCTION 

The method to be used in dealing with the volume 
element, was first worked out by Bargmann, Mont­
gomery, and Von Neumann//) for real A. The com­
plex: case is given below. 

An arbitrary complex: matrix A can be written 

A = UAV, (19) 

where A is a diagonal matrix containing the posi­
tive square roots of the eigenvalues of the Hennitian 
matrix AA +, while U and V are unitary. The de­
composition (19) follows from the theoremll that 
every complex matrix A can be represented 

A = OW, (20) 

where W is unitary, and D is a positive semidefinite 
Hermitian matrix which is the square root of AA +. 

Hence, U is made up of column vectors which are 
the eigenvectors of the matrix D = VAU+, and 

v = U+W. (21) 

We must know to what extent U and V are deter­
mined by A. Suppose 

UAV = U'AV' (22) 

tJlen 

(23) 

Let 

u == U!+U, and V $ PV+, (24) 

U and V are unitary. Rewriting (23) in terms of 
matrix elements, we find 

(25) 

Notice that no summation is needed in (25). Taking 
the absolute value squared of both sides of (25) 
and summing over i, we obtain 

X; = LX! IV;kI 2
• (26) 

i 

Now if we renumber the Ai. and correspondingly 
relabel the rows of V and columns of U, we obtain 

10 (a) V. Bargnutnn (private communication) Bargmann, 
Montgomery, and Von Neumann, in their work on the early 
digital computers during W orId War II calculated with 
random matrices in estimating computer error. This was 
brought out to the author when he remarked that availability 
of a computer was an advantage in present work on random 
matrices. Bargmann's answer was "Yes, but we were designing 
the computers." 

(b) H. H. Goldstine and J. V. Von Neumann, Am. Math. 
Soc, 2, 188 (1951). 

Cc) S. S, Wilks, Mathematical Statistics (John Wiley & Sons, 
Inc., New York, 1962), Chap. 18 on multivariate statistics. 

l! F. R. Gantmacher, The Theory of Matrices, translated 
by K A. Hirsh (Chelsea Publishing Company, New York, 
1959), Vol. I, Chap. IX, p. 276. 



                                                                                                                                    

EXPONENTIAL ENSEMBLE FOR RANDOM MATRICES 231 

the same matrix A. Therefore, we can fix attention 
on one ordering of the A, and still obtain all matrices 
A for the given values of Ai, as we vary U and V. 
To be definite we take 

(27) 

Those cases where two eigenvalues are equal can be 
ignored. They are of measure zero, since they occur 
on a lower dimensional surface in the n-dimensional 
space of tile eigenvalues. For the same reason,' we 
can omit consideration of the surface A .. = O. Hence 
we only consider nonsingular A, in which case W 
in (20) is uniquely determined.ll From (26) we 
obtain 

Taking A1; in (28) to be AI, we find since every 
nonzero term is then positive, 

V varies over all elements of the n-dimensional 
unitary group Un. If V + dV is a unitary matrix 
varying over a neighborhood about V, then a volume 
element for this neighborhood which is invariant 
over the unitary group is given by the productI3 

II dt". II dV,k, (32) 
i<1: iSA: 

where dt,,, and dv." are the real and imaginary parts 
of the ikth element of the skew Hermitian matrix 

av == V-I dV (33) 

Correspondingly, to define a neighborhood around 
[UJ, we remember that U + dU is equivalent to 
(U + dU)(ll + idr), where idr gives n infinitesimals 
corresponding to the exponents for an element of T, 
which happens to be close to 11. Now 

au = U-IdU (34) 

IVill = 0 if i ~ 1, 

Ivnl = 1, 

(29a) and by the above we have the equivalency 

(29b) au = a'U = (au + i dr). (35) 

but L. IVlil2 = 1. Hence, 

IVii I = 0 if i ~ 1. (29c) 

Now take A" in (28) equal to A2' Then every term 
on the left in (28) is positive except (A~ - AD IV)21 2 

which is zero by (29). Proceeding in this manner, we 
find that 0 and if are both diagonal, with the diag­
onal elements having absolute value equal to one. 
Since U equals U'O, it can only differ from U' by 
an arbitrary phase factor multiplying each column. 
Similarly, an arbitrary phase multiplies each row 
of V. This arbitrariness in phase, since W is unique, 
is wholly contained in U. It reflects the fact that 
the left-hand side of Eq. (19) is described by 2n2 

parameters, while for the right-hand side we need 
2n2 + n parameters. Weyl12a considered this problem 
in connection with defining the volume element for 
the unitary group. The solution is to form an equiva­
lence class of all unitary matrices belonging to the 
right coset of an element of T, where T is the set 
of all diagonal matrices of the form 

lie'" II k = I, ... n. (30) 

The (n2 
- n)-dimensional manifold thus formed is 

denoted [U(n)] and its elements are given by [U]. 
In our case we consider the transformation 

A ~ [U] A V, (31) 

12 (a) H. Weyl, The Classical Groups (Princeton University 
Press, Princeton, New Jersey, 1939) p. 194. 

(b) L. K. Hua, Harmonic Analysis of Functions of Several 
Complex Variables (Am. Math. Soc., Providence, Rhode 
Island! 1963), Chap. III, An alternate derivation, also based 
on Ret. 12a, of a formula corresponding to (42) is given here. 

Since the diagonal elements of the skew Hermitian 
au are pure imaginary, we may choose dr so as to 
make them exactly zero, but the off-diagonal ele­
ments are unaffected by dr. If the ikth element of 
aU is given by dr;k + ids ik , we take for the volume 
element of [U(n)] at [UJ, 

II dr'k II ds,,,. (36) 
,<Ie i<A: 

For To an element of T, we must have, by our 
equivalence relation, the volume for UTo the same 
as for U, since when we move from U to U + dU, 
in [U(n)J, this is the same as moving from UTo to 
(U + dU)To. This has been established by WeyJ.12& 
It is also found14 that the volume element (36) is 
invariant in [U(n)], and it is shown14 that 

OWl = Du/(21f")", (37) 

where OWl is the total volume for [U(n)] and Du is 
the volume for the n-dimensional unitary group. 

A straightforward caiculationI5 shows that if Uo 
is a fixed unitary matrix, the transformation 

(38) 

has a Jacobian equal to one, and therefore the 
Jacobian of the transformation (31), may be calcu­
lated for U and V both close to the unit element. 

Hence to evaluate the Jacobian, J, of (31), we 
13 D. E. Littlewood, The Theory of Group Characters (Oxford 

University Press, Oxford, England, 1940), Chap. XI. 
14 Cf. Ref. 12a; also Ref. 9, Appendix 4. 
1. Cf. Ref. 9, Chap. 4. 
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look at 

A + dA = (11 + dU)(A + dA)(li + dV). (39) 

As explained above, the diagonal elements of dU 
are taken equal to zero. Equating real and imaginary 
parts of the differential elements in (39), we obtain 

daii = dXii' dbii = Xi dv .. , 

dai; = dri;X; + Xi dt,;, db,; = dsi;X; + Xi dVi;, 

da;i = -driiX. - X; dt,;, db;, = dsi;Xi + X; dVii. 
(40) 

J is the absolute value of the 2n2 by 2n2 determi­
nant obtained from the coefficients of the right-hand 
side of (40). It breaks down into the product of an n­
dimensional unit determinant, the n-dimensional 
determinant of A, and 2n(n - 1) two-dimensional 
determinants of the form 

givingl2b 

± Ix; Xii = ±(X~ - xD, 
Xi X; 

J(A) = IT (X~ - XD2 IT Ai. 
i<i , 

(41) 

(42) 

Integrating expression (17) over Un and [U(n)], 
and transforming to Ei = X~, we obtain with (31) 
and (42), 

n 

X exp [ - LEi] IT E7 IT (Ei - E;)2 dEl· .. dEn, (43) 
i=l i<i 

P,,(EI, E2, ... , En) is the n-Ievel joint distribution 
function. The n! in the denominator of the right­
hand side is due to the fact that we now allow all 
orderings of the {Ei}, whereas up to now we ordered 
the eigenvalues. The factor 2", is from the last 
change of variables. 

The factor ITi<i (e. - E,)2 is the square of the 
Vandermonde determinant .1, where 

1 1 1 

.1= 
EI E2 E .. (44) 

,,-I n-l .. -1 
El E2 En 

We will make use of the associated Laguerre 
polynomials, which are orthogonal with respect to 
the weight (e-"x a

), on the positive half line. a is 
real, and greater than minus one. The Rodrigues 
formula 16 for these polynomials is 

16 Bateman Manuscript Project, edited by A. Erdelyi, 
(McGraw-Hill Book Company, Inc., New York, 1953). Sec. 
(10.12), Eqs. (5) and (2). 

(45) 

where n is the order of the polynomial. The normali­
zation is given by 

f' e-"x a [L:(x)]2 dx = rea + I)(n ! a). (46) 

The second factor on the right is a binomial coef­
ficient. 

Since we can add linear combinations of the other 
rows to a given row in (44) without changing the 
value of .1, with (45) we obtain 

1 1 1 

.1 = [IT (rn!) ] 
L~(El) L ~(E2) L ~(En) 

m~O 

L::- l (El) L::- l(E2) L::_l(E,,) 
(47) 

If 

(ME) = e-'/2Ea/2L~(E>[ rea + I)(n ! a) Tt, (48) 

then 

eME1) CPo (E2) cpo(e,.) 2 

P,,(EI' ... En) = K 

CPn-I(EI) CPn-1 (E2) CP .. _I(E,.) 
(49) 

Now if we call the determinantal factor in (49), 
.1'2, then we can see directly that the n-Ievel joint 
distribution function normalized to one is 

That this normalization is correct is evident from 
the single level density formula 

,.-1 

P .. (E) = (lin) L cp;(E). (52) 
k-O 

This familiar result is obtained by expanding the 
first .1' in (51) along the first column, and integrating 
P .. (En , ••• , El) over all but the first E. The range of 
integration is (0, co). The minor corresponding to 
cP, expands into (n - 1)! terms, each of which is 
orthogonal to all but the corresponding term from 
q,;'s minor from the second .1', and integrates with 
that term to give one. 
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We can now evaluate the nonnalization constant, The quantum condition 
Cn.a.. Setting a in (50) equal to zero, and using (18) 
and (51) we have f p. dr = (m - t)h 

g g _ {2nrrn(n+l)/2}[ 2nrr(n+l)/2 J' 
Un IU(n)] - n-1 n-1 

II m! (2'/I-)n II m! 
m-O m-O 

(53) 

The value for gUn given by the first tenn on the 
right may be checked against the value obtained by 
Dyson17 in another way. Using (53) with (50) and 
(51), we have Kn! = 1, hence 

Cn. a = rrn'[r(a + 1)]{n (m ! a) J. (54) 

3. SEMICLASSICAL DERIVATION OF THE 
ASYMPTOTIC SINGLE LEVEL DENSITY 

We will use the phase space of the hydrogen atom 
to find the asymptotic single level density. This 
corresponds to the use of the hannonic oscillator18 

in the investigation of the Gaussian ensemble. 
Consider the radial equation19 for a hydrogen 

atom with angular momentum tli. 

(-1i,2/2}')[I/r2 (d/dr)(r2 d/dr) - t(t + 1)/r2]Rml(r) 

- (e2/r)Rmlr) = EmRmk). (55) 

If 

(61) 

gives us using (56) and (60), 

f pp dp = 211'(m - t). (62) 

The functions satisfying (57) and the orthononnali­
zation 

are 

(64) 

The £2~!~(p) are the polynomials of order 
(m - t - 1) defined by (63) and (64). The Rodrigues 
fonnula20 for these polynomials is 

£'::(p) =;: (_)m(n!j(n - m)!) 

X ePp-md"-mjdpn-m(e-ppn). (65) 

If we look at the derivation of (52), we see that 
we can write for the single level density, 

{ 
.. +1 } 

Pn.a(P) dp = l/n m!;1 [Rmlp]2 dp (66) 

r = (m1i,2/2p.e2)p and (-2E) = (p.e4 /m21i,2) 

then we obtain 

(56) where we have taken 

[ 1// (d/dp)(/ d/dp) 

- ~ + ; - t(t j 1) JRmtCp) = O. (57) 

The classical equation of motion corresponding 
to (55) is 

If 

p! = [-1/4 + m/ p - t(t + 1)//] (59) 

then using (56), 

pp = (-1/2E)!(1/4}')tp.. (60) 

17 Reference 2, Eqs. (106) and (108). 
18 (a) E. P. Wigner, "Distribution Laws for Roots of a 

Random Hermitian Matrix" (unpublished). Some results of 
this work are available in: 

(b) N. Rosenzweig, Brandeis Summer Institute 1962, Sta­
tisl.ical Physics (W. A. Benjamin, Inc., New York, 1963); 
Mehta and Gaudin's derivation of the spacing formula for 
the real case is also shown here. 

U C£., L. P. Landau and L. M. Lifshitz, Quantum Mechanics 
Non-Relativistic Theory, translated by Sykes and Bell, (Per­
gamon Press, Ltd., London, 1958), Paragraph 36. 

a = 2(£+ 1); E = p. (67) 

The fonn we obtain for the level density will apply 
to more general a than the even integers we con­
sider explicitly. Since the wavefunctions are more 
closely confined to their classical orbits when m is 
large,21 we will obtain a better asymptotic approxi­
mation to the level density if we restrict ourselves 
to 1 « t. This is particularly true for the smaller 
allowed values of p, where the orbits are crowded 
close together. 

The right-hand side of (66) gives the probability 
that a particle, which is with equal weight in the 
first n quantum states of angular momentum t, 
will be found between p and p + dp. The first few 
even orbits of the corresponding classical phase 
space are shown in Fig. 1. The top half of the graph 
for a given value of m is indicative of the fonn of the 
eigenvalue density which we obtain below. 

Now since we are considering Eq. (66) for cases 
where the quantum numbers m are large, we can 
consider it as giving the probability density for a 

20 Reference 19, Appendix d. 
21 Reference 19, Chap. VII, see footnote p. 157. 
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'.0 

-5.0 

FIG. 1. The first few even orbits in phase space of hydrogen 
atom for t = t. 

classical particle which is with equal probability on 
each of the first n orbits of angular momentum f, 
in the phase space of P and pp. According to Liou­
ville's theorem of classical statistical mechanics, 
equal areas of our two-dimensional phase space have 
equal probability, and the probability density is 
proportional to (dppdp). If we integrate over PM 
we obtain the density in p, 

Pn.eCp) = (:,J(n ~ ~ - ~22 - it 
f2 

for (n + f) ~ p ~ 4n + 4f, (68) 

p".t(p) = 0 otherwise. 

The normalization constant is obtained from Eq. (62) 
or from actual evaluation of the integral of (68) 
over P, as in Ref. 22. 

4. DISCUSSION 

Let us discuss the general features of the level 
density as given by (68). P,,(p) has only one maxi­
mum which is located at p = [2f2/(n + f)]. The 
derivative of the level density becomes infinite at 
Pm.x = 4n + 4f, and Pmin = [t/(n + f)]. 

If a is greater than one, it is easy to see from (48) 
and (52), that both Pn(P) and its first derivative are 
zero at the origin, so that a convex region23 exists 
between the origin and Pmin. If f is a fixed constant, 
and n is increasing, the maximum at (2tln) may for 

22 M. Born, Mechanics of the Atom, translated by Fisher & 
Hartree (G. Bell and Sons, London, 1960), Appendix II. 

23 It is shown in this paper that the convex region near 
the origin is unimportant for fixed t. However, the "strong" 
case in which t -> 00 as a certain power of n, may be different 
and will be investigated ina later paper. 

24 See Ref. 9, Chap. 5. 

all practical purposes be considered to be at the 
origin. In this case, we can write an approximation 
for (68) valid over most of its range, in which the f 
dependence has been removed. 

Pn(P) ~ (1/-mpt)(4n - pi for 0 < P ~ 4n 
(69) 

Pn(P) = 0 otherwise. 

In this case, we might as well set a equal to zero in 
order to investigate the general properties of the 
density. Doing this, we find the exact value of the 
density at f equals zero from (48) and (52). 

p".o(O) = 1. (70) 

Since, from (45), the coefficient of the lowest 
power of x in Ln(x) is of opposite sign from the 
constant term, the slope of P" is negative at the 
origin. The asymptotic expression for P.. has two 
points of inflection away from the origin, one is 
found at the zero of the second derivative of (69), 
and is at 

P = 3n. (71) 

If we used (68) for f ~ 0, we would find this inflec­
tion point at P = 3(n + f). At this point, the graph 
of the density which was convex nearer the origin, 
becomes concave, until a second point of inflection 
is reached near P equals 4n. We know the existence 
of this point from the fact that the exact expression 
for P" is never zero. We will temporarily return to 
the use of the more accurate expression (68), to see 
what happens to the two additional inflection points 
on each side of the maximum of P n. The numerator 
of the second derivative of (68) is 

N = -4n' p3 + 12W + n,2)/ 

- (48t'n' - 4(2)p + 32t\ 
(72) 

n' == (n + f). 
If we assume (tin) -t 0, and set N equal to zero, 
we get a cubic equation, which can be factored to 
obtain 

P = 0, 

P = (4t2In') , (73) 

P = 3n'. 

The third point corresponds to the one we already 
obtained from (69). The first we knew should be at 
zero, since the maximum approaches zero, and we 
can see that the remaining inflection point at (4t In') 
also approaches arbitrarily close to zero, as n' be­
comes very large. 
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The number of roots which occur in the region 
beyond p equals 4n can be estimated by comparison 
with the corresponding calculation for the Gaussian 
ensemble. This is done explicitly in Ref. 9 and it 
is found that the number of roots in this region is 
negligible, when a is much smaller than n, even 
when n becomes very large. 

Now we can see that the region containing the 
largest number of levels is where the argument p 

(always positive) of the single level density formula 
is small. We might therefore expect p to represent 
minus the energy, as it would for negative matrices. 
If this were the case, the region corresponding to 
the lowest energies would be where p is large. In this 
region, we have found that the level density is 
slightly concave, increasing slowly from that near 
the first level until the inflection point is reached 
beyond which the growth becomes increasingly 
rapid as the curve enters the convex region. Although 
most of the roots occur in the convex region, as one 
would expect for nuclear energy levels, it is easy to 
see from Eq. (69), that the number of roots in the 
concave region, that is 

t
n 

nP,,(p) dp, 
Jan (74) 

grows as .the first power of n. This region corres­
ponds to the concave portion (near x = 4), of the 
curve labeled n = 6 (asymptotic), in Fig. 2, al­
though this drawing is for a somewhat different 
measure. Hence, the density of the roots which we 
have taken as corresponding to the low-lying energy 
levels, does not show a convex growth as expected 
for nuclear level densities. Therefore, the ensembles 
discussed here, do not fairly represent nuclear 
Hamiltonians, at least in this region. 

We should mention that the repulsion of levels 
follows from the term IIi<; (Ei - E;)2 in (43). It is 
easy to show that the dependence of the nearest­
neighbor spacing density function on the distance 
between nearest neighbors, is the same as for the 
Gaussian ensemble, at least to first order, in a region 
where the level density varies slowly. Leff25

& pre­
viously pointed out that this also holds when 
Legendre functions are the normalized functions2So 

in Eq. (52). 

26 (a) H. Leff, thesis, State University of Iowa, (SUI 63-23), 
p. 105 (1963) (unpublished), see also (b) D. Fox and P. B. 
Kahn, Phys. Rev. 134, B 1151 (1964). (c) P. Kahn, C. E. 
Porter, and Y. C. Tang (to be published). This group has 
been investigating various aspects of functions obtained by 
inserting different sets of orthogonal functions into Eq. (52). 
Their numerical result for the Laguerre functions confirms 
the convex shape obtained here. 

~ 
c 

a.. 

.1 

o~----~~----~~----~--~~~ 
1.0 2.0 3.0 4.0 

x-
FIG. 2. Single eigenvalue density for Gaussian ensemble, 

over positive matrices. Graph labeled asymptotic is for Eq. 
(S4). The other graphs are Eq. (52) with the functions r/>. 
coming from the orthonormalization of set (SO). 

Relation of the Level Density to the Semicircle Law 

In Eq. (69), suppose we let pi = y. Then we ob­
tain for the density of the square roots of the eigen­
values 

P .. (y) dy = (2jn1r)(4n - y2)i dy for 0 ~ y ~ 4n, 

= 0 otherwise. (75) 

So we are brought back to the positive half of a 
semicircle for the positive square roots of the eigen­
values. 

We can obtain (75) directly in the space of the 
square roots of the eigenvalues, if we analyze the 
special case of a = -!. In this case, from (42) "and 
(43) we obtain, 

P ... -f(~l' A2, "', "A,.) d~l ... dAn 

= const. exp [- :t A7] 
,-1 

X II (~7 - A~Y dAl '" d~, (76) 
i<1 

where Ai are the positive square roots of an n-dimen­
sional random positive matrix distributed according 
to (17) with a equal to (-!). The product term in 
(76) can be written 

HO(Al) 

6.2 = C H 2 (Al) 

H 2 .. - 1(Al) H 2n- 2(A2) ... H 2 .. - 2("A .. ) 

(77) 

The entries in the determinant in (77) are the even 
Hermite polynomials. Since the even polynomials are 
orthogonal with respect to (e->',,) on the half line, 
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we obtain as previously, by integrating over all but 
one column of A, 

2n-2 

P",-l(X) = (2/n) E ep~(X), (78) 
i-O 

even 

where epi(X) is the Hennite function nonnalized on 
the whole line. Now we can use Wigner's18 analysis 
of the phase space of the hannonic oscillator, and we 
again arrive at (75). 

Invariance Properties 

It is of interest to ask, to what extent the proper­
ties of our ensemble depend on the fact that we have 
restricted our domain to positive Hennitian matrices, 
and to what extent the level density depends on 
the precise invariant measure chosen for our en­
semble. We will first see what happens when we 
rewrite (17) with a Gaussian-like measure, but still 
over positive matrices. 

D(AA +) dA == C' exp [-Tr (AA +)2] dA. (79) 

In this case, Eq. (52) still gives the single eigen­
value density, except that epi now represents the ith 
function obtained when a Gram-8chmidt ortho­
nonnalization on the half line is carried out on the 
set 

(80) 

These functions do not relate to a known dif­
ferential equation, and are difficult to tabulate even 
numerically owing to polynomials in 7rt in the coef­
ficients. Numerical plots of the density for the 
matrix dimension, n equals 4, and 6, are shown in 
Fig. 2. A curve of the asymptotic fonnula derived 
below is plotted on the same graph for n equals 6. 
The closeness of the fit to the exact density shows 
that the asymptotic methods used become valid 
for rather small n. 

If we start with (79) as our measure, we obtain 
for the joint distribution function 

peEl, E2, ••• , En) = const II (E; - E;Y E e-·/·. (81) 
i<; i 

Except for the fact that the Ei in the present case 
are restricted to the positive half-line, this is the 
same expression studied by Wigner26 in connection 
with the Gaussian ensemble. It is argued that the 
right-hand side of (81) is the classical distribution 
function for a set of n point charges interacting 
among themselves with a logarithmic repulsive 
potential, and attracted to the origin with a hannonic 

26 E. P. Wigner, Statistical Properties of Real Symmetric 
Matrices with Many Dimensions, Proceedings of the Canadian 
Mathematical Congress (1957), p. 174. 

oscillator potential. We define a density q(X) for 
these charges. Then it is assumed as in classical 
statistical mechanics, that the charges distribute 
themselves in such a way as to maximize the loga­
rithm of the joint distribution function. This is 
equivalent to the usual statement that the over­
whelming majority of states for a classical system 
are very near to the most probable state. The varia­
tional calculation of Ref. 26 leads to the integral 
equation correct for the present case 

(82) 

The integral in (82) is by definition a principal­
value integral. The equation is valid for 0 :$ X :$ A. 
This equation and the fact that the density q, is 
never negative, detennine q. A is detennined from 
the condition 

1A q(p.) dp. = n. 

The solution of (82) is given by 

nP .. (p.) = q(p.) 

(83) 

= (l/7r)(tA + p.)(A - p.)1p.-1 for p. < A, (84) 

nP .. (p.) = 0 otherwise. 

To verify that (84) is the correct solution,27 we 
use the well-known identity 

1A d",IT(",) . 1A d",IT(p.) () 
o ('" - eX + it» = mlT(",) + 0 (p. - X)' 85 

The integral on the right is again a principal value. 
Now using (84) for IT, we evaluate the left-hand 

side of (85) by integrating clockwise along a con­
tour C surrounding the cut between zero and A, but 
coming between the pole at (X + iE) and the cut. 

i A dp.q(p.) 1 1 dp.q(",) (86) 
o ('" - (X + it» = -2 () ('" - (X + if»' 

The factor t comes from the fact that the phase of 
the integrand changes by exactly 11", from below the 
cut, to above. To evaluate (86) it is convenient to 
use the transfonnations 

'" = A(l + x)/2, then, x = liz. (87) 

We then notice that the only contributions come 
from poles at (X + if), and at z equals zero, which 
are inside the contour after inversion. The residue 

27 Actually (84) was first found by using a general solution 
for singular equations like (82) found in, S. G. Mikhlin, 
Integral Equati(lT/,8 (Pergamon Press, Inc., New York, 1957), 
p, 131. Thanks are due to H. Leff for this reference and J. 
Noble for instructive discussion on such integral equations. 
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at (A + ie) gives the first tenn of (85), while from 
the residue at z equals zero, we get A, which is the 
right-hand side of (82). If we substitute (84) into 
(83), we obtain 

A = (Sn/3)'. (88) 

Now P,,(/L) as given by (84), appears somewhat 
different from (69), however the graphs of the two 
expressions have similar shapes. The graph ob­
tained from (84) is convex from the origin until an 
inflection point is reached at /L equal to A12. Then 
it is concave Until/L equals A, where the exact ex­
pression for p .. must have a second inflection point. 
We note that if A' equals 4n, the first inflection 
point for (69) occurs at (3A'/4), and the second at A'. 

Another type of change of measure may be con­
sidered by starting with (17), but letting .( as de­
fined in (67) vary with n. Let 

(89) 

"I is a positive real number which we restrict to be 
less than one, so fin ~ 0 as n ~ co. We take the 
constant c equal to one. Let us discuss what happens 
to expression (68), in three cases, which we name 
to correspond with the size of the charge at the 
origin, when we use the electrostatic interpretation 
of the joint distribution function described earlier. 
The cases are: 

(1) Weak "I < t; 
(2) Critical "I = t; 
(3) Strong t < "I < 1. 

The situation in the weak case is very much the 
same as in the case for fixed e, with the maximum of 
the distribution approaching the origin as n be­
comes very large. When "I equals t, the situation 
changes, and the maximum is located at p equal to 2. 
For the strong charge, we note that the entire non­
zero portion of (68) is pushed increasingly far to the 
right, as "I increases. We obtain a family of density 
functions for the different "I, each peaked at 2n2~-1. 
If we were to take a linear combination of ensembles 
with different coefficients for various "I, we see that 
we can approximate closely, an arbitrary single 
level density fonnula. If each of these ensembles 
has the same dimension n, we still have repulsion 
of the levels. We will not pursue these linear com­
binations further, since we do not have at present 
any physical motivation for assigning weights to the 
"I's. The exact level density between p equals zero and 
.(2/ (n + l) needs to be more closely examined23 since 
it may be that the convex region located here in the 
strong case will contain sufficient roots to be used as 
a model for nuclear level densities. 

We have found, by examining several examples, 
that the eigenvalue density for positive matrices 
while not invariant with respect to the measure 
chosen, retains certain general features for a variety 
of possible measures. 
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The reduced density matrices for quantum gases are studied by Banach space techniques. For 
suitably restricted interactions, they are shown to be analytic functions of the activity. As the vol­
ume of the system becomes infinite, they tend in some sense to well-defined limits for which the same 
analyticity properties hold. As a consequence, the virial expansion is shown to be convergent in a 
neighborhood of the origin. 

INTRODUCTION 

RECENTLY the correlation functions of classical 
gases and the convergence of the virial expan­

sion have been studied, in the limit of infinite 
volume, by Banach space techniques (Ref. 1, see 
also Refs. 2, 3). The purpose of the present paper 
is to study the analogous problem in quantum 
mechanics, by similar methods. More precisely, we 
prove that the reduced density matrices, which are 
the quantum analogues of the correlation functions, 
tend in some sense to well-defined limits when the 
volume of the system becomes infinite. We use the 
formalism of the grand canonical ensemble and 
restrict ourselves to systems of particles interacting 
by two-body forces only. The two-body potential 
will be supposed to satisfy certain conditions, stated 
in Sec. 1. We shall consider successively (a) the 
quantum mechanical problem with Maxwell-Boltz­
mann (MB) statistics; (b) The quantum mechanical 
problem with quantum statistics. The reason for 
doing so is that the former case is much simpler, 
constitutes an intermediate step, and allows us to 
split the difficulties. Furthermore, we reach similar 
conclusions in both cases under conditions on the po­
tential which are weaker in the MB case than in the 
full quantum case. 

The basic tool of the present investigation is 
Wiener integration. The relevant definitions and 
properties will be found in Appendix 1, which follows 
closely Ref. 4 and stresses only the minor modifica­
tions needed for the present application. 

Sections 2 to 4 deal with the case of Maxwell­
Boltzmann statistics. The reduced density matrices 
are introduced in Sec. 2 and shown to be expressible 

* Permanent address: Laboratoire de Physique TMorique, 
Faculte des Sciences, Orsay, Seine-et-Oise, France. 

1 D. Ruelle, Ann. Phys. (N. Y.) 25, 109 (1963). 
2 O. Penrose, J. Math. Phys. 4, 1312 (1963). 
3 J. L. Lebowitz and O. Penrose, J. Math. Phys. 5, 841 

(1964). 
4 E. Nelson, J. Math. Phys. 5, 332 (1964). 

as Wiener integrals over suitable functionals. These 
functionals are shown to satisfy a set of linear 
integral equations, similar to the classical Kirkwood 
Salzburg equations, ~ and which can be viewed as 
a linear equation in a Banach space (Sec. 3). It is 
then possible to perform the limit of infinite volume, 
first on the intermediate functionals, and then on 
the density matrices themselves (Sec. 4). 

Sections 5 to 7 deal with the full quantum­
mechanical case and treat the same points in the 
same order. 

1. CONDITIONS ON THE POTENTIAL 

We consider a system of identical particles in 
/I-dimensional Euclidian space, interacting through 
a two-body potential <I> with the following properties: 

(a) <I> is a real function which depends only on 
the difference of the positions of the two interacting 
particles considered, and is a symmetric function 
of these two particles. 

In view of the use of Wiener integration, we impose 
(b) There is a closed set F of capacity 0 (see 

Appendix 1) such that <I> is continuous on the 
complement of F. 

This implies (Appendix 1) that the Wiener 
measure of the trajectories which intersect F is 
zero. Therefore we will be able to proceed as if 
<I> were continuous. On the other hand, this allows 
for instance, for /I > 1, a singularity at the origin, 
which may have physical interest. 

(c) <I> is integrable in the whole space. 

J I <P(x) I dx < + IX>. (1.1) 

Note that (b) and (c) exclude hard-core potentials. 
(d) In the case of Maxwell-Boltzmann statistics: 

There exists a real constant B 2: 0 such that for 
6 T. L. Hill, Statistical Mechanics (McGraw-Hill Book 

Company, Inc., New York, 1956). 

238 
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any system of different points Xi E R' (i= 1, ... ,n), 

L .:p(Xi - Xi) 2:: -nB. (1.2) 
i<i 

This implies in particular that .:p is bounded from 
below by -2B. Ruelle6 has given sufficient condi­
tions for (1.2) to hold. 

(d') In the case of quantum statistics only: 
.:p(x) 2:: O. This means that the potential is purely 
repulsive, and is a severe physical limitation. 

2. THE REDUCED DENSITY MATRICES FOR 
MAXWELL-BOLTZMANN STATISTICS 

The system is supposed to be enclosed in a 
bounded (open) region A with volume V. We use 
units such that 1i = 1 and that the common mass 
of the particles be 2. We note fJ = l/kT, A = (1I'fJ)t, 
thermal wavelength, and z = activity. Points in 
R' are denoted by X, y, U, v and trajectories by w. 
i;) means always that the corresponding trajectory 

Furthermore, e-/JH .. is a bounded operator in L2(AfA) 
with norm ~ emllB

• The m-particle reduced density 
matrix is then defined as 

1 00 zm+ol 
PA(X"', y"') = Z L -, duo 

A .-0 8. A' 

X e-~H .. +,(uo, X"'; uO
, y"') (2.5) 

or 

where 

X exp [- U mCW"')] (2.7) 

is the grand partition function. (2.6) can be written 
is an integration variable. Upper indices in x" as 
(or w"') denote systems of m v-dimensional points 
(or trajectories) while lower indices label individual 
members of such systems. We define 

sm = the set of families of m continuous tra-
jectories in R', (SI = S); 

SO: = the subset of sm consisting of the tra-
jectories contained in Am, (Sl = SA); 

all. (w"') = characteristic function of S';. 

if;p(x'" - yrn) = f~ ~ exp [ -~ (Xj - yj)2J ; 

U",(w"') = 1/J lSi~sm q,[Wi(t) - Wk(t)] dt. (2,.1) 

It follows from (1.2) that 

U",(w"') 2:: -m(3B. (2.2) 

The Wiener integral (Appendix 1) of a functional 
fCw"') is denoted f P"'''.ym Cdwm)fCw"'). Let Hm(x"', y"') 
be the m-particle Hamiltonian operator correspond­
ing to the box A. It is shown in Appendix 1 that 

e-~H .. (x", ym) = J P",m,y",(dwm)aACw"') 

X exp l-U ",(w"')] (2.3) 

and that this quantity is a continuous function of 
x"', y'" (except when one of the Xi - Xk or Yi - Yk 

lies in F), bounded by 

lrnBif;~(xrn _ yrn). (2.4) 

B D. Ruelle, Lecture Notes of the Theoretical Physics 
Institute, University of Colorado, Boulder, Summer 1963. 

(2.8) 

where 

by use of the Fubini theorem and uniform con­
vergence due to (2.4). 

By analogy with the classical case (See Ref. 1), we 
now define Banach spaces E~ as follows. Let E be the 
complex vector space of sequences of Wiener in­
tegrable essentially bounded functionals of m tra­
jectories II' = II' (w"') , where m = 1, 2, .... The 
subspace of those rp's for which 

IIrpll~ = s'!,P [:m ess. sup. Irp(w
m) I ] < + IX) 

is a Banach space EE for the norm /lrpl/E' 
From (2.2) and (2.9) it follows that 

IPA(W
m

) I 
1 '" Izlm+. . 1 

~ IZ I L I exp [em + 8)(3B] --;; V' 
A 0-0 8. A 

(2.10) 

~ [Izle'iB
]"' IZAI-1 exp [(VI)"') Izle'iB

]. (2.11) 

Therefore PA = (PA(W"'), m = 1, 2, ... ), where 
the PA (w"') are defined by (2.9) is a vector in E. for 
any ~ such that lz/lB ~ ~ with norm 

(2.12) 
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One shows similarly that Z A is an entire function 
of z and is bounded by 

!ZA! ~ exp (V/X') IzllB]. (2.13) 

It should be noted that both numerator and de~ 
nominator in (2.12) ---+ (X) as exponential functions 
of V as V ---+ (x). This indicates the need for such 
methods as the one used in the following section. 

3. INTEGRAL EQUATIONS FOR THE tlA(Ulm ) 

We first show that the fiA(V/") defined by (2.9) 
satisfy integra\. equations similar to the Kirkwood­
Salzburg equations. I> (2.9) can be written as 

1 '" m+. J 
PA(W"') = z 2: ~ du·Pu.,,,.(dW')aA(w"'+·) 

A .=0 8. 

X esp Um-1H(W.,-t, w')] exp [-FI(w"')] 

X PA(Wm-r, W")} for m > 1 (3.6) 

PA(Wl) = aA(wl)z[l + :t -\ J du"P .. ~ ..... (dw") ,._1 n. 

X K(wlt W")PA(W") 1 (3.7) 

The first term in the sum in Eq. (3.6) is simply 
p(W"'-I). The interchange of summations and integra­
tions can be justified by using the bounds of the 
preceding section. 

We next use the fact that PA(W"') is a symmetric 
function of the m trajectories Uii to symmetrize 
Eq. (3.6) by the same method as in the classical 
case (see Ref. 1). (2.2) can be written as 

'" 2: F;(UirR

) == 2U ... (Uim) 2:: -2~Bt (3.8) 
;=1 

X iI e).'P [-1~ <I>fwt(t) - w;(t)] dt] (3.1) where F;(w"') is defined by analogy with (3.2). 
'~l () 

where 00"'-1 is obtained from w'" by removing WI 

and where 

(3.2) 

X J du·P" •. ".(dw')aA(w .. -
1H

) 

. ] ~ 81 K( -") X esp [-U",-J+. ~n! (8 _ n)1 (i)h Ui (3.3) 

where 

K(Uil' w") 

= t1 {exp [ - 1'1 q,[Uil(t) - Wj(t)] dt] - 1}' (3A) 

Let 8 - n "'" q. Then 

PA(W"') "'" ZA1zaA,(Uil) exp [-F1(Ui"')] 

X i: \ J du"P,,~,~~(a;;.,")K(Uih w") 
n,q-on. 

Finally we obtain 

PA(W"') "" aA(Wl)Z exp [-Fl(W
ffI
)] 

X {:t -\ J du"Pu •• ,,~(dW")K(W11 w") 
n=(ln. 

Therefore, for at least one j, 

(3.9) 

Let W~ be the subset of S'" such that 00'" E Wi 
implies Fl("j"') 2:: -2f3B. (3.9) means that 8'" = 
Vi-I ~. Let 'Yfi be the characteristic function of 
Wi and fJ,' = '7,/2:7.1 'I]{. Then L~ (Jj = 1. Let 
II" be the operator defined on functions of m tra~ 
jectories lP(w"') as the circular permutation of k 
steps on the arguments of these functions and let 
II be the operator defined by 

.. 
IIlP(Ui"') = 2: Uk[el(Ui"')~Ui"')J. (3.10) 

k=1 

If lP is a symmet,rie function, II reduces to the 
identity. Applying II to both sides of (3.6) gives 

Pll = AA,(r + KPl,), (3.11) 

where fill E E is defined in Sec. 2. 
t; is the vector in E defined by t;(Wl) = z, r(w''') =: 0 

(m > 1). r belongs to E t for any ~ > 0 and Ilrllf "'" 
Izl!~. 

A", is the linear operator defined by (AAlP)(W"') = 
aA(w"')lP(Uinl

), and is a norm. decreasing operator of 
each EE into itself. 

K is ,the linear operator defined in E by: 

(KI(J)(Ui"') = Z t IIk{fJ1(Wm) exp [-F,(wm
)] 

.=1 

X [:t -\ J dunp",.",.(dW") 
n=On. 

X K(w" W")'/I(W"'-\ w")]} for m > 1, (3.12) 
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X K(Wl' wfl)'P(w"). 

IpA(x"', y"')1 ::;; (1 - kf1[C(lm-m lfJl(X'" - ym). (3.21) 

lfll(X'" - ym) considered as an operator on L2(Am) 
(3.13) is norm-decreasing; therefore 

We next show that K is a bounded operator of E. 
into itself. Let 'P E E •. From (2.10), (3.4), (3.9), 
it follows that 

IK'P(wm
) I ::;; lzl II'PII~ e2J1B~m-J i: ~", [C{j3)]" 

.. -0 n. 

1 ::;; Izlll'PII.~'" f exp [2J3B + ~C{j3)], (3.14) 

where 

C{j3) = sup J duPuu(~) 
X I exp [ - i{3 <1>(w(t) - wet)~ dt J - 1/ (3.15) 

provided C(m < 0:>. We prove in Appendix 2 that 
under conditions (a) to (d) on the potential <1>, 

C{j3) ::;; C{j3) = (ljX:)/3e2{3B J 1cI>(x)1 dx. (3.16) 

Therefore K is a bounded operator in E. with 
IIKII. ::;; Izi ~-1 exp [2/3B + ~C(mJ. The best bound 
is obtained for ~ = [C(/3)fl and is 

IIKll. ::;; k = Izl C{j3) exp [2/3B + 1]. (3.17) 

Therefore, for any z E ~, where 

~ = {z : Izi < C{j3)-l exp [-2/3B - I]}, (3.18) 

Eq. (3.11) has a unique solution in E.; rand K 
are entire (vector-valued) functions of z; therefore 
the solution is an analytic function of z in ~. Moreover 

IlpAII. ::;; <lzlj~)(1 - k)-1 ::;; (1 - k)-l. (3.19) 

It follows from (2.12) and the fact that ZA has no 
zero on the positive real axis that the solution of 
(3.11) coincides with PA as defined by (2.9) for z 
real, > 0, and E ~. Now we get from Eqs. (2.7) 
and (2.9), 

(3.20) 

The left-hand side is analytic in ~, and Z A is an 
entire function [with ZA(O) = IJ. Therefore ZA has 
no zeros in ~ and PA as defined by (2.9) and (3.11) 
coincide throughout ~. 

Substituting the solution of (3.11) in (2.8) shows 
that PA(X"', ym) is an analytic function of z in ~ 
with values in the space of bounded operators on 
L'''(A "'). From (3.19) it follows that 

4. LIMIT OF INFINITE VOLUME 
(CLASSICAL STATISTICS) 

(3.22) 

The essential point in the preceding argument is 
that the bound on K is volume independent. There­
fore the equation obtained from (3.11) by letting 
the volume be infinite 

P = r + Kp (4.1) 

has a unique solution in Eli for z E ~, with the 
same analyticity properties as derived for PA. Here 
we show that PA ~ P in some sense as A becomes 
infinite. The method is the same as in the classical 
case (see Ref. 1). 

Let A be a sphere with fixed center. This is no 
loss in generality. We label A, a, and P by its radius. 
Let 0' > 0 > O. Let z ~. Consider first 

IIAnKAn+8' - AnK AR+8II.· 

Let <p E Eli' Then 

I(ARKAn+8· - AnKAn+8)'P(wm) I 

::;; Izi e21lB ~ ~! ~",+n-l X anCWl) 

X J du"P", •. ".(di;n l[an+8'(W") 

- an+8(w")]K(Wl, w")/ ll'PII.. (4.2) 
From 

laR+6'(w") - an +8 (w") I 
" ::;; L: aR+!·(w7-1

) lan+!·(w;) - an +8 (w;) I (4.3) 
;=1 

(where W;-1 is obtained from W" by removing Wi) 
it follows that the right-hand side of (4.2) is bounded 
by 

Izl e2 {JB t :, ~m+"-lnC{j3)"-lC!.R{j3) II'PII. 
(4.4) 

= ~"' II'PII. Izi exp [2/3B + ~C{j3)]Ca.R{j3), (4.5) 

where 

C!.R{j3) = stp J duP".(dw) IK(w, w)l. (4.6) 

It is understood that the trajectory W lies entirely 
in An and the integration is restricted to the con-
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tinuous w which have at least one point outside An+8• 

C.,R«(3) is obviously bounded uniformly in Rand 
o by C«(3). Furthermore, it is shown in Appendix 2 
that: 

ClJ,R(j3) :::;; I, (3e2I1s{1 14>(x) I dx 
X \xl>8/2 

+ J 1<1>(x)l dx crr(0/8, m}. (4.7) 

This bound depends on 0 alone, and not on R. 
It tends to zero as 0 --? co. In view of future applica­
tion to more complicated cases (hard-core potentials) 
however, we shall make use only of the weaker 
property: C •. R +1>.«(3) --? 0 as 0 --? co for fixed R > 0, 
p > O. From (4.5) and (4.7) ,we obtain: 

!lARKAR+o' - ARKAlHall~ :::;; Iz\ 
X exp [2(3B + ~C(j3)]C •. R((3) :::;; '1](0, R), (4.8) 

where '1](0, R) is an increasing function of R, and 
such that '1(0, R + po) tends to zero as 0 tends 
to infinity for fixed R > 0, p > O. 

From this we get, as in Ref. 1, 

IIAR (ARwK)' AIl+i • - AIlKill~ 

:::;; ki
-

1
{ % 71(0, R (i - 1]0) 

+ ~ '1](0, R + [i - I]O)} :::;; 2jki-ln(0, R + jo). 

(4.9) 

From 

and the corresponding relation for A R +3K, we get 
by using (4.9), where we replace jo by 0: 

!lAR(l - AIl+.K)-lAR +. - AIl(l - Kt1lle 
k,,+l ". (0 ) 

:::;; 2 1 _ k + 2 f.; jk'-ln 3 ' R + 0 . (4.11) 

Therefore 

IIARPR+a - AIlplle 

:::;; 2 lk:1

k + 2 t jkH'I](Y, R + 0)' (4.12) 

For fixed R, this can be made arbitrarily small by 
choosing first n and then o. We have proved: 

Lemma 1: Let Sn be the set of continuous tra­
jectories contained in the sphere AR • Then the 
restriction to SR of PR+. tends to the restriction to 
SR of p as 0 --? ro, in the sense of the Ee topology. 

Note that in the present case, nCo, R) is independent 

of R. Therefore, in the same way as in the classical 
case/ the limit in (4.12) is uniform in R. 

We now consider the p(x"', ym). We prove 

Lemma 2: p,,(x"', ym) tends to p(x"', y"') uniformly 
on the compact sets as h ~ ro. 

Let D be a compact set contained in a sphere AR - r 

of radius R - r, and 0 > O. Let 

IIARPR+8 - ARplie :::;; f(O, R), (4.13) 

where teO, R) ~ 0 as o~ 00 for fixed R. Let x"', 
y'" ED"'. Now: 

lpR+.l(x"', y"') - p(x"', y"')1 

:::;; J px"'.vm(dwm
) lpR+aCW"') - p(w"') I. (4.14) 

We split the trajectories into two classes: (a) those 
which stay in A; contribute a term bounded by 
teO, Rn'" /X'''''; ((3) those which have points outside 
A; belong to K' (r, (3) (A1.5). From (A1.7) it follows 
that their contribution is bounded by 

2 IIpll. f"mcrr(r/4, (3)(l/A''''). 
Therefore 

!PR+Ii(X"', y"') - p(x"', y"')! 

f" ~'" (r ) 
:::;; E(O, R) x"" + 2 Ilplle X"" mcu 4: ,(3 • (4.15) 

This can be made arbitrarily small by choosing 
successively rand 0 big enough. 

From Lemma 2, the identity for z E A of the 
PA defined by (2.9) and (3.11), and Lemma 9 in 
Appendix 1, it follows easily that the p(x''', y"') are 
continuous functions of their arguments for any 
(x"', y"') such that none of the Xi - Xk, (j ¢ k) 
or Yi - Yk (j ¢ k) lies in F. 

We next prove the following. 

Theorem 1: p,,(x"', ym) ~ p(x"', yin) in the sense 
of the strong topology for the operators on L2[{Rv)m]. 

Consider first <p E L2[(R'n with compact support 
Dm enclosed in A~_. where AR _ r is the sphere of 
radius R - r. Let 

Ap(X"', y"") = PRH(Xm
, y"') - p(x"', ym) 

IAp(X"', y"')1 :::;; E1(0, R) 

for x'" and y'" E A~. 
Consider 

11AP'PW = J dx'" dy'" dy'''' 

X I Ap(X"', ym) Ap(x"', Y'''')'P(Y''')'P(Y'''') \. 

(4.16) 

(4.17) 
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Let V be the volume of AR - r and V' the volume 
of AB • We split the x integration as follows. 

(1) x'" E A:. This region contributes 
a term ~ E~V''''V2''' Il<pW. (4.18) 

(2) xm Et: A';;. The contribution of this region is 
bounded by 

[2f" Ilpl!.]1l 1 dx"" dy'" dy,m 
:tmEtAR m 

x ..fp(x'" - ym) Y;{J(X'" - y'''') i<p(y"')<p(y,m) i (4.19) 

~ [2~" llpll.rm· V Z
". II<pW (l/)..'''')q(r, f3). (4.20) 

This quantity tends to zero as r (or R) tends to 
infinity, <p (and therefore V) being held fixed; from 
(4.18) and (4.20) it follows that Ap<p ~ 0 in L2 as 
a ~ <x). Therefore PhCP ~ pcp in L 2 for any cP in a 
dense subset of V; from this it follows immediately 
that P4 ~ P strongly. 

We next tum to the virial expansion. 
From translation invariance due to Condition (a) 

and continuity of p(x, y) it follows that p(x, x) = Po 

is a well-defined constant which is an analytic func­
tion of z in A and is to be interpreted as the analytic 
continuation of the density. From (2.7)-(2.9) we get 

I V!+a z ! log ZR+B - pol 

(4.21) 

where VRH and aR+1i are the volume and charac­
teristic function of AR +a• From Lemma 2 we get 

!PR+.(X, x) - pol aR(X) ~ El(a, R), (4.22) 

where El(a, R) is easily seen to ~ 0 as 0, R ~ <X) 

for fixed aiR. From (4.22) and (3.21) we get 

I 
1 d I 

-:r;:--z d-Iog ZR+& - Pol 
Y R+& Z , 

1 [ R' ] 
).." 1 - (R + or ' (4.23) 

which can be made arbitrarily small by choosing 
sucessively o/R and Q. Therefore 

(4.24) 

the convergence being uniform on the compacts in 
A. We have therefore: 

Theorem 2: The function (l/V) log ZA is analytic 

for z E A and converges uniformly on the compacts 
as the radius R of A becomes infinite. 

From this it follows as in Ref. 1 that the virial 
expansion converges in a neighborhood of the origin. 

5. THE REDUCED DENSITY MATRICES 
(QUANTUM STATISTICS) 

We turn to the case of a system which obeys 
quantum statistics. Throughout this section the 
potential ip is supposed to satisfy Conditions (a) ~ (d) 
[not (d')]. The system is enclosed in a bounded open 
region A with volume V. 

The m particle reduced density matrix is then 
defined7 as 

1 '" m+. f 
PA(X"', ym) = Z L: ~ du' E (±? 

A {} S. A !I 

X e-PUm+,[u', X"'i n(u', ym)], (5.1) 

where n is a permutation of the appropriate number 
of variables, here m + 8. 

The second sum runs over the elements of the 
symmetric group Sm+.' 

(±)n is: +1 for Bose statistics 
the signature of the permutation n for 

Fermi statistics. 

Substituting (2.3) into (5.1) gives 

1 '" z"'+· f 
PA(X"', yno) = -Z :E -, duo L: (±)n 

A {} S. IT 

Z A is the grand partition function 

ZA = f z"', f dx'" L: (±)np~",n(",,,,)(dw"')aA(w"') 
o m. II 

X exp [-U ... (w"')]. (5.3) 

We shall now put (5.2) in a more useful form. This 
involves interchange of summations and integra­
tions. We first forget convergence requirements and 
perform the algebraic operations. We next give 
absolute bounds uniform with respect to the integra­
tion variables, which justify these operations. (5.2) 
involves an integration over (m s) trajectories 
with s identifications of endpoints. In the case of 
Maxwell-Boltzmann statistics (hereafter referred to 
as MB case), this gives m trajectories x'" ~ y'" 
of length (defined as the length of the t interval) 
tJ and s closed cycles of length tJ. Here, due to the 
permutation n, there may be Pi (nonnegative 

7 C. Bloch, Diagram Expansions in Qua.ntum Statistical 
Mechanics (North-Rolland Publishi.ng Company, Amsterdam, 
to be published). 
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integer) extra trajectories inserted between X; and 
the y reached from it (which in general is not v;) 
whereas the remaining closed cycles may consist 
of several trajectories of length {3. Let Ittl = L:';' tt;. 
Then 

Lemma 

. 
= [L: (±)nII]m L C:(L: (±)nII).(8 - r)! (±)I~I 

II r-O n 

where: the permutation sums labeled m and r 
operate in an obvious way on the differential 
elements containing the variables (xm

, ym) and (u', u') 
respectively. 

The last summation is understood to be restricted 
to Ittl = 8 - r. 

The superscript ttm + 1 in the last factor means 
that the trajectory X; ~ y; has length (tt; + 1){3. 

In fact, for given Ittl or r, one has to distribute ym 
in all possible ways on the open trajectories starting 
from xm (first factor); select out of 8 variables the 
r which are not on these open trajectories (second 
factor); make all permutations of these variables 
between themselves. There are still (8 - r)! ways 
of distributing the remaining s - r = Ittl remaining 
variables on the open trajectories; each of them gives 
the same contribution. The factor (±) I~I is easily 
obtained by induction over Ittl. The interpretation 
of the lemma in terms of graphs drawn on a cylinder 
of circumference (3, similar to the graphs obtained 
in perturbation theory7 is straightforward. 

From (5.2) and the preceding lemma, we obtain 
easily 

00 

PA(X ffl
, ym) = L: (±)n L: (±)I"I 

II ~mc:o 

(5.4) 

where 
1 00 m+II'I+'J 

PA(W
ffl

, ttffl

) = ZA ~ z r! du' ~ (±)n 

X P"'.n(u') (dw')aA (wm 
, w') exp [-U(wm

, ttffl, w')]' (5.5) 

The exponent in the last factor is the same as in 
(5.2) with only a change in the notation of the 
variables: Ittl trajectories have been taken out of 
8 and have been included in w

m
• We shall need the 

following elementary properties of the symmetric 
group CP •• Any permutation II is a product of cycles. 
Let 1'; be the number of cycles of length j. L:~ h; = r. 

A class l' of conjugate elements consists of those 
permutations which have the same partition into 
cycles, i.e., the same l' /s. The elements in l' are 
obtained by distributing the r elements in all possible 
ways in these cycles. Their number isS 

Consider now the integration over w', u' in (5.5) . 
The contribution of II E CPr depends only on the 
class l' of II; two elements in the same l' give con­
tributions which differ only by a relabelling of 
integration variables. (In terms of graphs, there is 
a 1-1 correspondence between the classes l' and 
the unlabeled graphs formed by the w'.) With the 
notation 

(5.5) becomes 

X exp [- U(wffl , ttm
, w·)]. (5.8) 

We now give upper bounds which justify the 
preceding algebraic operations. From (2.2) and (5.8) 
we obtain 

I ( m ffl)1 < _1_ [I I f3B ]ffl+11'1 
PA W , tt - IZ A I z e 

X { t (izi :;By ~ h~ J Id'YI} (5.9) 

~ _1_ [/zl ef3B ]m+II'1 L: L: II -.L 
IZAI • ')' ; 'Y;! 

(5.10) 

by use of (5.6) and the relation r = L hi' 
This series is absolutely convergent and sums up to 

(5.11) 

provided /z/ ef3B ~ 1. Similarly, from (5.3) we get 

{
V 00 (lzllB)i} 

IZAI ~ exp " L: .. /2+1 , 
1\ ,-I J 

(5.12) 

which shows that ZA is an analytic function of z 
for /z/ < e- f3B

• 

8 For instance, H. Borner, Darstellungen von Gruppen 
(Springer-Verlag, Berlin, 1955), p. 28. 
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By analogy with the MB case we define E as the 
vector space of sequences of Wiener measurable 
essentially bounded functionals of m trajectories w'" 
of respective lengths (pm + 1)j3. Let <p <p(w"', pm); 
m = 1, ... ; pj = 0, 1, .... We define E~ as the 
subspace of those <p for which 

1 
11<p11~ = ~!! ~m+I~1 

X (ess. sup. l<p(£<I"', pm)!] < + 0;>. (5.13) 

E~ is a Banach space with (5.13) as definition of the 
norm. (5.11) shows that PA = {PA (w"', p"') I belongs 
to Ei for 

(5.14) 
with norm 

1 {v '" (lzi efJB)i} 
!!PAlh ~ -,Z i exp ,v 2: ·,/2+1 • 

A 1\' ~l 1 
(5.15) 

In view of (5.14) we suppose in the following that 
~ ~ 1. Finally, for PA E Et the series (5.4) is ab­
solutely convergent. In fact: 

IPA(X"', y"')1 

.. J .. ~"i } 

~ IlpAn~ m! r' g t.~ A'(Pi + 1)'/2 

[ 1 .. t J'" :::; IIPAll. m! X' t; k'/2 (5.17) 

which converges absolutely for ~ < 1. 

Remark: The preceding quantities are easily 
computed for free particles (<I> = 0). ± is + for 
Bose statistics and - for Fermi statistics. Then 

(5.18) 

where a; = f P~,,(dw) du IXA(W). Careless replacement 
of aj by VjX'r2 gives the well-known result9 

This expression makes sense for A infinite. 

'" i 1 [Ix - 12J p(x, y) = ~ (±)H j'/2 ",' exp jfJ Y - • (5.23) 

In particular, for x = y, one gets the well-known 
result9

: 

1 '" i-I Z' 
p(x, x) = Po = " 2: (±) .• /2' 

1\ 1 1 
(5.24) 

6. INTEGRAL EQUATIONS FOR THE !lA(,)"', lI"')' 

We first show that PA(W"', pm) as defined by (5.8) 
satisfy integral equations similar to those obtained 
in Sec. 3. (5.8) can be written as 

1 .. z .. +I~I+r 
PA(W"', pm) = ZA exp [-Fl(w"', pm)] ~ r! 

X J 2: h; d'YIXA (W"', Wf
) exp [ - U(W"'-l, p"'-1, W')] 

"f 

X exp { - ifJ ~ i; <I>[WI(t + jfJ) - wk(l)] dt}, (6.1) 

where £<Im-t, p",-1 is obtained from w"', pm by removing 
Wl, PI, and where 

+ { ~ ~ i~ <I>(Wt(t + j{J) - £<Ik(t + ik{J)] dt. 

(6.2) 

For a given 'Y, the w' are distributed in closed loops 
c corresponding to the cycles if of 'Y. Let 

{ I
fJ ", 

f(c) = exp - Q ~ "ft., <I>[Wl(t + j{J) 

- Wk(t)] dt} - 1 (6.3) 

1 1" ;-1 Zi 
-logZA = -" (±) -. V "," "7' f'2+1 

(Le., we collect in f(c) the interactions between £<11 

(5.19) and c). The last factor in (6.1) is then 

Furthermore: II (f(c) + 1] = 2: K(£<Il, PI, 'Y'), (6.4) 
eEr ,.'cr 

( '" m) Z",+I"I PA W , P = . (5.20) where 

"' 
PA(X"', y"') = 2: (±)f{ II PA(Xj, Yrrw), (5.21) 

11 j-1 

where 

PA(X, y) = :t1 (±)HZi J p;.(dW)IXA(W), (5.22) 

9 For instance, K. Huang, Statistical Mechanics (John 
Wiley & Sons, Inc., New York, 1963). 

K(£<Il, PI, 'Y') = JI f(c) (6.5) 
cE-y' 

is one term in the expansion of the product in the 
left-hand side of (6.4). Here, the cycles of 'Y have 
been split into two families; the product of the 
cycles in each of them define two classes 'Y' and 
'Y" of permutations of r' and r" variables respec­
tively; one has "I = "I' 'Y" and r = r' + r" and the 
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sum in (6.4) runs over all possible 'Y' obtained in itself. K is the linear operator in E defined by 
this way. It is easily seen that the same 'Y' is obtained 
in (III C~;') ways, that d'Y = d"! d'Y" and that 

hr IIc"Y'j r! h"hr " 
"Y "YI = 'T"i "Y' '1"-

i r . r . 
(6.6) 

x f ~ h~':, d'Y" al. (w"", wr) exp [ - U(wm- 1 
, p.m-l, wr)] 

(6.7) 

where 1p.'1 = 1p.1 - p.!. The sum over r", 'Y" can be 
performed, due to uniform absolute convergence 
resulting from the preceding bounds, and introduces 
again Pl. in the right-hand side. We drop the prime 
on 'Y', r' and obtain 

Pl.(W"', ,.t') 

= al.(wl)z1+~' exp [-FI(w"', p.m)] f ~ J L d'Yh~ .-0 r. "Y 

X K(w17 P.l, 'Y)PA(Wm-\ p.",-t, 'Y) for m> 1 (6.8) 

and similarly 

Pl.(Wl> P.l) = al.(wl)z1+P
, exp [-FI(w!, P.l)] 

X [1 + t:. ~ f ~ d'Yh;K(Wl' P.l, 'Y)Pl.h) J, (6.9) 

where the argument 'Y in PA represent the family 
of closed loops c associated with the cycles c of the 
class of permutations 'Y. In (6.8), al. (WI) can be 
replaced by al. (w"'). 

From now on, we restrict ourselves to purely 
repulsive potentials [Condition (d,)]. Equations (6.8) 
and (6.9) can be written as 

Pl. = Al.(r + Kpl.), (6.10) 

where Pl. E is defined in Sec. 5. r is the vector 
in E defined by 

{

S(WI' P.l) = z!+jt'e-F,(""~1) 

s(w"', p."') = 0 for m> 1; 
(6.11) 

r belongs to E~ for Izi ~ ~, and llrlh S 1; AA is 
the linear operator defined by 

(6.13) 

(6.14) 

We next show that K is a bounded operator of 
Eli into itself. In fact, let IP E Eli' 

IKIP(w"', p.m)l S Iz!1+I1'[exp (-FI)] 111P11. c-l+ll"I 

(6.15) 

Let 'Y = {'Y i I, let C; be a loop of length j, and de; 
be defined in an obvious way and such that Id'Y! = 
II; (dcyr,. (6.5) can be written as 

K(WI' P.l, 'Y) = II [f(CiW I
• (6.16) 

j 

(6.17) 

(6.18) 

provided bJ = sup .. , J dCI /tCc,)1 be finite and such 
that the series in the exponent be absolutely con­
vergent. We prove in Appendix 2 that under Condi­
tions (a)-(d'), 

bj S A';VIZ (3j(.J.I.1 + 1) J !<I>(x)! dx. (6.19) 

Therefore 

IKIP(w"', p."') I 
S [Jzl exp D({3, ml+p1~"'-1+lp'l 11!p1I~, (6.20) 

where 

D({3' ~) (6.21) 

KisaboundedoperatorinE~forlzl S ~expr.;....D(p,m 
with norm 

1 
IIKII~ S /zl ~ exp D({3,~) = k. (6.22) 

(6.12) Let 

and is a norm decreasing operator of each E~ into ~ = lz : Izi < ~ exp [-D({3, ~m- (6.23) 
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For any z E ~, (6.10) has a unique solution in E~. 
rand K being entire functions of z, this solution 
is analytic for z E ~. Moreover 

(6.24) 

The same argument as in the MB case shows that 
PA as defined by (5.8) and by (6.10) coincide through­
out ~, and that Z A has no zeros in ~. Substituting 
in (5.4) the solution of (6.10) shows that PA(X"', y"') 
is an analytic function of z in ~ with values in the 
space of bounded operators on L2(A"'). Furthermore 

\\PA(X", Y"')\\2 ~ (1 - krlm! e(l - ~rl. 

7. LIMIT OF INFINITE VOLUME 
(QUANTUM STATISTICS) 

The argument is the same as in the MB case and 
we give only the modifications needed in the proof. 
The first problem is to find an upper bound for 

IIARKA R +6, - ARKARHlle· 

Let cp E E~. 

I(ARKARH , - ARKARH)CP(W"', ILm)1 

~ Izl1+~' Ilcplle ~"'-1+I~'1 

( ., ~j)" e 
X exp L: bj -;- L: -; ~bj, 

I J 1 J 
(7.1) 

where ilb; is obtained from bj by restriction of the 
integration to the loops which have points outside 
ARH , WI being entirely contained in AR • It is shown 
in Appendix 2 that 

., ~i fJ {f ., e L: ilb; -; :::; (ILl + 1) -; 1q,(x)1 dx L:-:;;; 
1 1 "J\ I-I> 6/2 I J 

J ., ~j } + c lq,(x) I dx ~ j'/2 0-(5/8, jm , (7.2) 

which tends to zero as 5 tends to infinity. Therefore 

IIARKAR+6' - ARKAR+61Ie 

~ (Ue){~ - Izl exp [D(fJ, ml-l(fJ/"J\") 

X {f 14>(x)I dx f '::2 1_1>6/2 1 J 

+ J !4>(x)! dx t j::2 0-(5/8, j(3)} = 1)(8, R), (7.3) 

where 1)(5, R) has the same properties as in the 
MB case. Lemma 1 and its proof then hold without 
change. 

Lemma 2 holds without change, the proof being 
modified as follows. From (5.4) we obtain 

IPR+6(X"', ym) - p(x"', ym) I 

:::; m! sup f J P~:;!(dw .. ) 
~m,lImED"" I'm-o 

(7.4) 

The contributions of the trajectories of classes 
(a) and (fJ) are bounded respectively by 

[ 1 e J'" m! E(8, R) A' L: j'/2 (7.5) 

and 

[ 1 ~; J'" c m!2!!p!!.m-"- -"J\" £..J j'/2 "J\" 

The series in the last factor converges uniformly in 
rand -+ 0 as r -+ <x>. The result follows as in the 
MB case. 

Theorem 1 holds with the following change in 
the proof. The contribution of the region x'" El: A;; 
is bounded by 

[2 !!p!!~ m!]2V2m I !cpW U",.~~D" i",u.
m 

ax'" 

X [f ~"'+I~IP~:~u\,(dwm)J 
p'm_o 

X [ :t ~"'+I"IP~:~ul,m(dwm)J 
p'm_o 

:::; [2 IIp!!. m!yV2m !IcpW m(l - ~r(m-lI 

[
1 ., ~j Jm[.,. ] 

X "J\P ~ f/2 ~ fu(r, jfJ) • 

(7.7) 

(7.8) 

The last series is uniformly convergent with respect 
to r and tends to zero as r tends to infinity. Therefore 
the bound (7.8) tends to zero as r tends to,infinity 
for fixed cpo 

The theorem follows as in the MB case. Theorem 2 
and the convergence of the virial expansion hold 
without modification. In the proof, the basic in­
equality (4.23) is to be replaced by 

I 1 d I 2 1 -V z d- log ZR+6 - Po :::; El(5,R) + -1 k­
R+8 Z - "A" 

., ~j ( R") XL:-l----
i~l j'/2 (R + 5)" 

(7.9) 

and El(O, R) is easily seen to tend to zero as 8 tends 
to infinity for fixed 5/R, as in the MB case. 
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8. CONCLUSION. 

The main results of our investigation are the 
following. 

(1) The m-particle reduced density matrices, for 
quantum gases obeying MB (or quantum) statistics, 
for finite volume PA(X"', yrn) and for infinite volume 
p(x"', ytn) are analytic functions of the activity in 
a domain A defined by (3.18) [or (6.23)] with values 
in the space of bounded operators on L2[(R')"']. 

(2) p(x"', yno) is the limit of PA (x"', ym) as A 
becomes infinite in the sense of Lemmas 1 and 2 
and Theorem 1 of See. 4. 

(3) The pressure can be continued as an analytic 
function of z in A and the virial expansion converges 
in a neighborhood of the origin. 

The two-body potential <P is supposed to satisfy 
Conditions (a) ~ (d) in all eases. In addition, in the 
case of quantum statistics, we had to impose the 
very restrictive condition that <P be > 0, i.e., 
purely repulsive, [this is needed to ensure the 
convergence of (6.18) for every fJ.1 when bj is replaced 
by the bound (A2.1O)] and our next task will be 
to get rid of it. 
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APPENDIX 1 

Conditional Wiener Measure 
We follow closely Ref. 4 (referred to as N). We 

call X, y, U, v points in l-dimensional Euclidian 
space R I, Let 

!/I(I(x - y) = (;r{3)-I12 exp [-(x - y)2/{3] (Al.I) 

(in N's notations, we have taken 4D 1). 
A trajectory w is a function from the closed 

interval [0, (3J into the one point compactification R,z 
of RI, The trajectories form a space 

0= II Rl 
0:,;,:,;(1 

which is compact for the topology of pointwise 
convergence. 

The conditional Wiener measure is defined on the 
continuous functionals of the type few) = F[w(t 1), 

. " ,w(t,,)], where ° < tl < .,. < tn < (3, and where 
F is a continuous function of n points of R/, by 

Px.(f) = f !/I,,(Xl - x)if;,.-I,(X2 - XI) .,. 

X !/I1l-tn(Y - Xn) dXl ... dx.F(xI' ... ,x.) (A 1. 2) 

and extended to the class e(O) of continuous func­
tions on 0 as in N. There exists then a regular 
measure also denoted P"'fI such that for all f E e(O), 
P",,,(f) = f P",,,(dw) few). 

Continuity of the Trajectories 

Let 

(T(E, 8) = sup f !/I,(x - y) dy 
t:$5 lv-zl>f 

(AI.3) 

Oz 1 -u' 1-1 d = 172 e u u, 
'If' u></(ol I 

(Al.4) 

where Oz is the area of the unit sphere in l-dimen­
sional space. er(~, 8) is a function of ~2 /8 and ~ ° 
faster than any power of ~2 /0 as e2

/ 0 ~ co, We now 
prove 

Theorem 1: The measure P x. is concentrated on 
the w continuous from [0, {3] to RI. 

The proof is the same as in N, and we give only 
the minor modifications needed. 

Lemmas 1, 2, 3 hold with the following two 
changes. The sets A, B, C, D are defined with the 
additional restriction that all the values of t involved 
belong to the closed interval [0, 'YJ where 'Y is fixed, ° < I' < {3. The conditional measure of these sets 
involves an extra factor !/I,H (y - u) where ° ::; t ::; 1'; 
this factor is bounded by ('If'({3 - 'Y)f1/2, 

Therefore we get the following result, correspond­
ing in N to 

Lemma 3: Let ° ::; a ::; b ::; 'Y, with b - a ::; o. 
Let E(a, b, ~) = {w : Iw(t) - w(s)1 > 2E for some t 
and s in [a, bJl. Then 

Px.[E(a, b, ~)] ::; 2['If'({3 - 'Y)rI/2u(t~, Q). 

We suppose to avoid minor complications that 1'/8 
is an integer. Then we have 

Lemma 4: Let 

Fh, IE, 8) = {w : Iw(t) - w(s)1 > E 

for some t and sin [0,1'] with It - sl ::; o}. 

Then 

pz.[Fh, f, 0)] ::; (2'Y/o)['If'({3 - 'Y)rZ/ller(iE, 8). 

Same proof as in N . 

The measure P.u is unchanged by exchange of 
x and y and reversing the sense of the trajectories, 
Therefore, 1" being any fixed number in [0, 1'1, 
we have 
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Lemma 5: Let H("'(I' 1'2) = {W : wet) E F for some t E [1'11 'Y2]}' 

G('Y', E, 8) = {w : Iw(t) - w(s) I > E Let ° < 1" < l' < (3. Then 

for some t and s in h', (3] with It - sl :::; 8}. H(O, (3) C H(O, "'() V H('Y', (3). 

Then Therefore 

P",v[G(",(', E, 8)] :::; [2((3 - 'Y /)/0](7r"'(,)-1/2U(tE, 0). P",.[H(O, (3)] :::; P".[H(O, 1')] + P",.[H(",(', (3)] 

Now let 

K'(E, Il) = F('Y, E, Il) V G('Y', E, Il) 

or equivalently 

K'(e, Il) = {w : Iw(t) - w(s)! > E for some t 

and 8 in [0, (3) with It - 81 :::; Ill· 

Then 

:::; ~ u(~ , 1l){[1r(f3 .2 1')]1/2 + f7r"'(~)Z~}. 
Taking "'( = "'(' = (3/2, we get 

Lemma 6: 

P",v[K'(e, Il)J :::; c).. -/((3/ Il)u(te, Il) 

with).. = (II(3)t and c = 21/2+1. 

(A1.5) 

(A1.6) 

(A1.7) 

We now prove Theorem 1. Let S be the set of all 
continuous trajectories w. Then 

S = () U K(e, 0) 
• 

or 

S' = U () K'(e, Il) 
I 

(where for any X C n, X' means the complement 
of X). Therefore P".(S') = 0, by Lemma 6. 

It can be proved in a similar way that PZII is 
concentrated on the subset of S consisting of those 
w's for which w(O) = x and w«(3) = y. 

Exclusion of a Set of Capacity O. 

The (Newtonian) capacity is defined in Ref. 10. 
We have the following theorem 

Theorem 2: Let F be a closed subset of R' of 
capacity 0, and let x EE F, y EE F. Then 

P,,"({W : w(t) E F for some t E [0, (3JD = O. 

This is the analogue of Theorem 5 in N and is 
easily deduced from it. In fact, define, for each 
pair I'll "'(2: ° :::; 1'1 :::; 1'2 ::s; (3. 

10 H. Cartan, Bull. Soc. Math. France 73, 74 (1945). 

:::; [1r(f3 ~ 1')]1/2 J P",,[H(O, 1')] du 

+ (1r)/12 J P •• [H(",(', (3)] dv 

= ° by application of Theorem 5 in N. 

Restrictions on the Volume 

We have to consider physical systems for which 
the position x is confined to an open (connected) 
subset A of RI, and restrict the integration to 
trajectories which stay in A. Let: 

We next prove 

AI = {w : w( t) E A}. 

n" = () AI 
0,,;.,,;/3 

Lemma 7: SA is measurable. 

S' is measurable (with measure 0), therefore S is 
measurable. At is open in n, therefore measurable . 
Let ~ be a dense denumerable subset of [0, (3]. 
Then, due to continuity, 

SA = «() AI) n S = e() At) n S. 
%t,,;p tEl) 

S A is a denumerable intersection of measurable sets, 
therefore measurable. 

Functional Integral Representation of 
exp[-~H] 

(H will be the Hamiltonian for the Schrooinger 
equation in l dimensions with potential U.) Let U(x) 
be a real function, bounded from below by -M, 
and continuous in a bounded open connected region 
A, except possibly on a closed set F of capacity zero. 
Let aA(w) be the characteristic function of SA' Let 

fCw) = exp { - L/3 U[w(t)] dt}. (AI.S) 

Then: 

Lemma 8: few) is integrable with respect to P",.(dw), 
for x E A, Y A. 

The proof is the same as in N. The sequence of 
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integrable functionals 

converges almost everywhere to few) and is bounded 
by the integrable constant functional efiM . Therefore, 
by Lebesgue's bounded convergence theoremll few) 
is integrable and 

I f(w)Px.(dw) ::; 1M if;fI(X - y). 

Lemma 9: f P Xy (dw) few) aA(w) is a continuous 
function of (x, y) for x and yEA - F. 

We first prove the continuity with respect to y. 
Let yEA - F, y' E A - F, Iy - Y'l = 2E. Let 
~ be the sphere of radius r + E with center at 
!(y + y'). E and r are taken small enough so that 
~ C A-F. Let 

f'Y(w) = exp { - i'Y U[w(t)] dt} (A1.9) 

If'Y(w) - GI ::; 1/ for w C ~, 

where G = exp [-'YU(y)]. U is continuous at y, there­
fore 1/ can be made arbitrarily small by taking E and 
r small enough. 

Let x(w) be the characteristic function of K(r, 'Y) 
defined in Appendix 1 as the complement of K' (r, 'Y) 

(A1.5). Let: 

(A 1. 10) 

(The subscript (3 - 'Y is the length of the t interval.) 
We have 

(A1.11) 

Then 

\J [Pxu(dw) - p x.·(dw)]t(w)aA(w)I 

= II (I(U) du I [PJ.(dw) - PJu'(dw)]t'Y(w)aA(w)I 

::; I (I(U) duG 1if;'Y(u - y) - if;'Y(u - y')1 

+ J g(u) du J [PJ.(dw) + P,,:.(dw)] 

X {1/x(w) + e'YM[l - x(w)]aA(w) + e'YM[l - aA(w)]) 

::; eflM {E(2/'Y)[7r({3 - 'Y)r lI2 J du[if;'Y(u - y) 

II P. R. Halmos, 1l1easure Theory (D. Van Nostrand 
Company, Inc., New York, 1950). 

+ if;'Y(u - y')] 12u - y - y'l 

+ 1/[if;fi(X - y) + hex - y')] + 4c(1r'Yf I/2u(W, 'Y)} 

by Lemma 6. This can be made arbitrarily small 
by choosing successively 1/ (i.e., r + E), 'Y, and E. 

It is then straightforward to extend the preceding 
argument to a proof of the simultaneous continuity 
in (x, y). 

We next define for any cp E L2(A) 

(A 1. 12) 

TfJ has the following properties [see N, and also 
Ref. 12]: Tfl is a bounded operator in L 2(A), with 
IITfJII ::; 1M; Ta·TfI = Ta+b (a > 0, (3 > 0); 
limfJ_o Tflcp = cp for all cp E L2(A). 

Therefore, TfJ is a strongly continuous semigroup.13 
Furthermore, TfJ is self-adjoint for any {3 2 O. It 
then follows13 that there exists a self-adjoint operator 
H defined by 

H = -lim (l/{3)(Tfl - 1) (A1.13) 
{i-O 

(the limit being in the sense of the strong operator 
topology), such that TfJ = e- flH

• It is easily seen, 
as in N, that for any cp E L2(A) which is twice 
continuously differentiable and has compact support, 

Hcp = (-i.:1 + U)cp. (Al.I4) 

Therefore, H is a self-adjoint extension of the 
symmetric operator -i.:1 + U, and can be taken 
as the Hamiltonian of a particle in l-dimensional 
space, with mass m = 2 and potential energy U. 

APPENDIX 2 

Here we prove the various bounds used in the text. 

Bound for 

G({3) = s~p I t(w)P,.,,(dw) du (A2.I) 

where 

few) = lexp [ - { 1>{w(t) - wet»~ dt] - 11 (A2.2) 

1> is bounded from below by 2B. Therefore 

few) ::; e2f1B 
{ 11>{w(t) - w(t» 1 dt. (A2.3) 

Let w' be the trajectory obtained from w by applying 
the translation - u. We use the notation: w = w' + u. 
Then: 

12 E. Nelson, ColI. Intern. CNRS 117, Paris, 1962. 
13 F. Riesz and B. Sz.-Nagy, Functional Analysis (Fredrick 

Ungar Publishing Company, New York, 1955). 
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C(jJ) :::;; sup e2fJB J Poo(d{;,,') du 
'" 

X lR Iq,(w(t) - {;,,'(t) - u)! dt. (A2.4) 

By the Fubini theorem, we can perform successively 
the integrations on u, on t and on c;;. All three 
are trivial and we get 

(A2.5) 

where 

C(jJ) = ~ Pe2(lB J 1q,(x)1 dx. (A2.6) 

In (A2.3), one can replace e2fJB by e2(lB-l/2f3B. One 
gets then the slightly better bound 

e2(lB - 1 1 J 
C(f3) :::;; 2B ~ 1q,1 dx. (A2.7) 

The improvement in the subsequent applications is 
negligible. 

Upper Bound for b; (Sec. 6) 

The same argument applied to b; gives a bound 
which is obtained from C (f3) by replacing f3 by jf3 
and q, by (J'l + l)q,. Therefore 

b; :::;; (X"j'/2r1f3j(1 + J'1) 

X exp [2jCJLl + 1)f3B] J Iq,(x)! dx (A2.S) 

which under Condition (d,), i.e., B = 0, reduces 
to (6.19). 

Upper Bound for C!.B(~) as Defined by (4-6) 
and the Subsequent Restrictions 

The domain of the (;, integration is split into two 
parts. 

(1) The w which stay entirely outside AB+ Ml• The 
same argument as above shows that they contribute 
a term bounded by 

X -. f3e2fJB sup 1 I q,(x - x) I dx 
~EAB iEAB+l/. 

:::;; A -'f3e2fJB 1 Iq,(x) I ax. 
1,,1>3/2 

(A2.9) 

(2) The {;" which have points inside A/Ni/2. 

We replace this restriction by the weaker one: 
w E K' (0/2, (3) (A1.5). The contribution of these 
trajectories is bounded by 

f3e211B J 1rJ>(x)1 ax 1 Poo(d(;,) (A2.10) 
K'(!/2,/l} 

:::;; f3e2
/l
B f 1rJ>(x)1 dx(c/X')(J(O/S, (3). (A2.11) 

Therefore, 

Cu(ft) :::;; 1, f3e2fJB{f 1rJ>(x)1 ax 
X 1%1>612 

+ f 1rJ>(x) I dxc(J(0/8, (3)}. (A2.12) 

Upper Bound for t tl.b; ~ 
1 j 

The same method as above leads immediately to 
the bound (7.2). From (J(0/8, j(3) :::;; 1, it follows 
that the last series converges uniformly with respect 
to r. The right-hand side of (7.2) tends to zero as 
o tends to infinity. 
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The. reduced .densi.ty matric.es of quantum gases are studied by means of a Wiener integral repre­
sentatIOn deSCrl?ed m a. prevlous 'p.aper. They are shown to satisfy a cluster property in the form 
of an absolute mtegrabIllty condltIOn of the natural quantum analogues of the Ursell functions 
considered as functions of the differences of their arguments. Use is made of the natural transpositio~ 
to the quantum case of the algebraic formalism introduced by Ruelle in the classical case. By-products 
are two results on the signs of the coefficients of the Mayer expansion, in the case of Maxwell-Boltz­
mann and Fermi-Dirac statistics, respectively. 

INTRODUCTION 

I N a previous paper, (Ref. 1, hereafter referred to 
as I), the reduced density matrices (RDM) for 

quantum gases have been studied by use of func­
tional integral representation and Banach-space 
methods. Under suitable restrictions on the inter­
action, they have been shown to be analytic func­
tions of the activity z in a neighborhood of the origin, 
and to tend to limits in some sense as the volume 
becomes infinite. The purpose of the present paper 
is mainly to prove for these RDM a cluster de­
composition property (CP) similar to that obtained 
by Ruelle (Ref. 2, hereafter referred to as R) for 
the correlation functions of classical gases. By­
products will be bounds on the RDM, more precise 
than those given in I and two results on the signs 
of the coefficients of the Mayer expansion of the 
density (or pressure) as a function of z, valid for 
purely repulsive interactions, in the case of Maxwell­
Boltzmann (MB) and Fermi-Dirac statistics respec­
tively, and similar to that obtained by Groeneveld3 

for classical gases. We shall make use of an algebraic 
formalism introduced by Ruelle2

•
4 for the classical 

problem, and which can be adapted easily to the 
quantum-mechanical problem. 

As in I, we consider successively MB statistics 
(Sees. 1-2) and quantum statistics (QS) (Sees. 3--4). 
The algebraic formalism in the MB case is briefly 
reviewed in Sec. 1. Easy consequences are the non­
integrated form of the Kirkwood-8alzburg (KS) and 
Mayer-Montroll (MM) equations, as well as the 
property of the Mayer expansion mentioned above. 
In Sec. 2, we obtain various bounds for the RDM 

* Permanent address: Laboratoire de Physique Theorique 
et Hautes Energies, Orsay, Seine et Oise, France. 

1 J. Ginibre, J. Math. Phys. 6, 238 (1965). 
2 D. Ruelle, Rev. Mod. Phys. 36, 580 (1964). 
a J. Groeneveld, Phys. Letters 3, 50 (1962). 
4 D. Ruelle, Lecture notes of the Theoretical Physics 

Institute, University of Colorado, Summer 1963. 

and we prove the CPo Sections 3 and 4 deal with 
the QS case and treat the same points in the same 
order. 

It should be noted that the interaction is supposed 
to satisfy the restrictive conditions of I. In particular, 
we had to exclude hard cores, as well as attractive 
interactions in the QS case. It will be shown else­
where than most of the results of the present paper 
remain true in these more general situations. 

1. ALGEBRAIC PRELIMINARIES IN THE MB CASE 

We follow closely R. The notations are those of 
I when not otherwise stated. The word "measurable" 
without further specification refers to the conditional 
Wiener measure px", .... (dwm

) with arbitrary x"', 
y'" E (RV)'" (see I). We note X, Y, ... , etc. finite 
sequences of v-dimensional trajectories. In particular, 
in Secs. 1-2, X means always (w"') = (WI' ... , wm ). 

Let E be the complex vector space of sequences of 
essentially bounded measurable functionals of m 
trajectories h = [h(w"') , m 0, 1, 2, ... J such that 
f P x"' •• m (dw"')h(wm

) be Lebesgue-measurable func­
tions of (x"', ym), and E+ the subspace of those h 
for which ho = 0. We define a product In E by 
(h ll h2) ---7 h = h\ ... h2 

heX) = 2: h1(Y)h2 (X - Y). (1.1) 
YcX 

The summation extends over all subsequences Y 
of X. The trajectories are in the same order in Y 
and X - Y as they were in X. E then becomes a 
commutative algebra with unity 1. We define a 
mapping r of E+ into 1 + E+ as the * exponential 

r(h) = 1 + h + h * h + :.c..
h _* ~ ... ..:.::. + .. , . 

2! (1.2) 

r maps E+ onto 1 + E+ and has a unique inverse 
r- I

. We now define a linear mapping J of E into 
the vector space E of sequences of Lebesgue measur-

252 
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able functions of m pairs of points (x;, y;) in R" 
(j = 1, .. , , m; m = 0, 1,2, ... ) by h ~ h = Jh 

{

iio = ho 

h(x"', ym) = J Pzmvm(dwm)h(wm) m > O. 

(1.3) 

We define a product * in E and a mapping r from 
E+ to 1 + E+ as the * exponential, in the same 
way as * and r were defined, the only difference 
being the replacement of each trajectory W; by a 
pair of points (x;, y;) (which can be thought of as 
the ends of a trajectory). Then the diagram in Fig. 1 
is commutative. The interest of this trivial construc­
tion lies in the fact that it has a less trivial analogue 
in the QS case. 

We next define derivations in E as in the classical 
case2 by 

D",h(wm
) = hew, WI, .,. ,Wm); (1.4) 

Dxh = D."D." ... D"'mh. (1.5) 

D", is linear and satisfies 

(1.6) 

defined by 

r 
E+--+E 

_ r _ 
E+~E 

FIG. 1 

f(w"') = exp [- U",(wm)J. (1.12) 

We are considering here a system of identical 
particles and U m(w"') represents the interaction be­
tween m particles. Its meaning will become clear 
later on, when we write its explicit expression under 
the restriction to two-body forces only, but at the 
present stage we need only the properties stated 
above. 

Let A be a bounded open region (in which the 
system is supposed to be enclosed) and let aA (w) 
be the characteristic function of the set of the con­
tinuous trajectories which stay in A. Then the 
grand partition function of the system (GPF) is 
defined by 

Z = (aAz, f). (1.13) 

and 
D",crh) = D",h * rh for h E E+. 

It follows from (1.11) that Z is an entire function 
C1.7) of z with Z(O) = 1. Its logarithm is therefore 

holomorphic in a neighborhood of the origin, and 
Now let aCw) be a measurable function of one 
trajectory, such that (1.14) 

where 

(1.8) (1.15) 

The RDM are defined as the components of ih = 
and let a be the sequence of functions (a(w

m
), J PI.. E E+, where PI.. = (PI.. (wm), m = 1,2, ... ) E E+ 

m = 0, 1, 2, ... ] defined by is defined by 
m 

ao = 1, a(wm) = II aCw;). (1.9) 
;-1 

To any h E E we associate the following formal 
series in z 

(az, h) = ~ ~~ J Pz •. z.(dw") dx"a(w")h(w"). 

Then 

(1.10) 

Lemma: h ~ (az, h) is a homomorphism of the 
algebra E into the algebra of formal series in z. 

The proof is the same as in R. 
Now let U = (U",(wm

), m = 0, 1,2, ... ) be a 
sequence of real measurable functions, satisfying 

Uo = 0 

(1.11) 

PAO = 0, 

1/11..0 = 1, 

PA(W"') = aA(Wm )Zm 1/lA(Wm
) (m> 0) (1.16) 

1 
1/IA(X) = Z (aAz, Dxf) (m > 0). (1.17) 

These definitions are identical with [I: Eqs. (2.8), 
(2.9)]. 

We define now,px E E, Xl.., and IPA E E+ by 

Then 

,px = r 1 * Dxf, 

1 + PI.. = rXA, 

1/IA = rIPA. 

1/IA(X) = (aAz, ,px), 

XA(X) = aA(X)ZmIPA(x), 

IPA(X) = (aAz, Dxg), 

,p., = D.,g. 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

where B is a constant (real 2 0), and let fEE be The proof is the same as in R. 
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We define also XA = J XA, which satisfies 

PA = l'XA. (1.25) 

We now restrict ourselves to systems of particles 
interacting through a two-body potential ¢ satisfying 
Conditions (a) - Cd) of I. Then U becomes 

infinite volume. In particular, in the Mayer expan­
sion of the density as a power series of z, the co­
efficient of Zl has the sign of (_) 1+1. 

This follows immediately from (1.16), (1.17), and 
(1.21), and the preceding lemma. 

" iP (1.26) 2. BOUNDS ON THE RDM AND CP IN THE MB CASE U m(W"') = L..J ¢[w;(t) - Wj(t)] dt. 
lS;<;S" 0 The two-body potential ¢ is supposed to satisfy 

From (1.18) and (1.26) one gets easily the non- conditions (a) - (d) of I. We first obtain by induc-
integrated form of the KS equations tion on m + n the following inequality 

cPx(Y) = exp [-Fl(X)] 

X 2: K(Wl' 8)cPx'+s(Y - 8), (1.27) 
8eY 

where X' is obtained from X = (w"') by removing WI' 

X' + S is the sequence consisting of the elements 
of X' and those of S, without changing the order. 

Fl(X) = ~ f ¢[Wl(t) - w;(t)] dt 

K(Wl, S) 

= .. U {exp [ - ill ¢[Wl(t) - wet)] dt] - I} 
The proof is the same as in R. 

(1.28) 

(1.29) 

Similarly, we obtain the nonintegrated form of 
the Mayer-Montroll equations5 

cPx(Y) = exp [-U .. (X)] 

X 2: K(X, 8)cPs(Y - 8), (1.30) 
SeY 

where 

K(X, S) = "U (exp { - t f ¢[w;(t) 

- wet)] dt} - 1). (1.31) 

We conclude this section with a theorem on the 
signs of the coefficients of the Mayer expansion for 
purely repulsive potentials. We first prove 

Lemma: Let Y = w" and let ¢ ;::: O. Then cPx(Y) 
has the sign of (-r. 

This follows from (1.27) by induction on m + n: 
for m + n = 1 either m = 1, n = 0, cPl(O) = 1 
or m = 0, n = 1, cPo(1) = O. K(Wl, S) has the sign 
of (-Y (S = w·) for ¢ 2:: 0, whence the result. 
We now prove 

Theorem: In the expansion of PA(W'") and PA(X", ym) 
in power series of z, the coefficient of z .. +n has the 
sign of ( - )". The result holds both for finite and 

6 J. E. Mayer and E. Montroll, J. Chern. Phys. 9, 2 (1941). 

where 

(m> 1), 

(2.1) 

(2.2) 

(2.3) 

R = ~ exp [-2!3B - ~C(.B)]. (2.4) 

~ is real> O. The best possible value is ~ = [C (!3)r1. 

C(.B) = 1- !3e2fJB J I¢I dx 
A' 

appears as an upper bound [I: (A2.6)J for sup"" 
f Pvv(dw) dy IK(Wl, w)1 and A = (7r!3)! is the thermal 
wavelength. The proof is the same as in R. 

A more careful majorization6 enables us to replace 
R .. n by the better bounds Pm .. 

p .... = m(m + n),,-l 

X exp [2(m + n - l)!3B][C@)]"(m > 1), (2.5) 

PI .. = (n + 1)',-1 exp [2(n - 1)!3B][C@)r. (2.6) 

Comparison of (2.1) with (1.16), (1.21) shows that 
for Izi < R the power series for if;A and PA, as well 
as the corresponding series for infinite volume, ob­
tained by replacing aA by 1: 

if;(X) = f z .. , J P •••• (dw .. )cPx(w .. ) dy" (2.7) 
n-O n. 

Po = 0 

p(X) = z'" if;(X) (m> 0) 

are uniformly convergent and bounded by 

I if;(X) I ~ (~m-l/R"'-l)(1 - Izl/R)-l, 
Ip(X) I ~ (lzI/~)(lzI/Rr-l~m(l - IzI/R)-l. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

This bound is better than that given in I (cf. I: 3.19) 
by a factor ClzIIR)m-l. It has been shown in I that 
when A becomes infinite the functions PA (w"') tend 

6 O. Penrose, J. Math. Phys. 4, 1312 (1963). 
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to limits uniformly for Izl ~ R' < R. Therefore the 
coefficients 

tend to the coefficients of the expansion of these 
limits in powers of z. Therefore these limits coincide 
with the p(wm

) defined by (2.9). 
In the case of purely repulsive potentials (cf> ~ 0) 

one can get more precise bounds from the MM 
equations (1.30). We shall obtain by induction on 
m+n: 

f l<iix(w") I P.·u·(dw") dy" ~ R:.. .. exp [- U ... (.X)] (2.13) 

Comparing with (1.30) gives the sufficient condition: 

" 
R:" .. ~ E C=R .... -.[mC(8)]· (2.14) 

.-0 
due to 

f Puu(dw) IK(X, w)1 dy ~ mC(8). (2.15) 

(2.14) has the solution, for any ~ > 0 

R:.. .. = n! ~-.. exp [em + n - 1)~C(8)]. (2.16) 

This is the value taken by R ..... for B = O. A more 
careful majorization6 enables us to replace R:.. .. 
by P:" .. 

P:.. .. = m(m + n)"-I[C(8)]". (2.17) 

For purely repulsive potentials and physical, i.e., 
real positive values of z, we can obtain better 
bounds on PA directly.3 From the definitions (1.16), 
(1.17), and the inequality 

exp [ - U m+,,(W"'+")] 

~ exp [- U "'(w"')] exp [- U ,,(w")] , 

we obtain immediately 

(2.18) 

PA(W"') ~ z'" exp [-U",(w"')]. (2.19) 

From the various bounds on PA and the relation 
ih = J PA, one obtains easily corresponding bounds 
for the RDM themselves. 

We now prove a CP for p(x"', y"'), i.e., a property 
~f decrease at infinity of x (x"', y"') defined by 
1 + jj = rx. We define X and <p in the same way 
as XA, <PA by 

1 + p = rx, 

x(X) = z'" <p(X), 

<p(X) = t z", f P •••• (dw") Dxg(w") dy". 
,,-0 n. 

(2.20) 

(2.21) 

(2.22) 

We first obtain by induction on m + n the following 
inequality 

f l<iix(w") 1 p ••.•• + •• (dvJ .. ) dy" ~ Rm,:X"'iftp(a"), (2.23) 

where R", .. is defined by (2.2), (2.3), and 

iftfl(a") = fI 1. exp [-a~J. 
i-I A ~ 

(2.24) 

We have used the following bound, which follows 
immediately from I: (A2.3) 

sup J P •.• +c(dw) dy IK(Wl' w)1 .. , 
~ iftfl(a)~e2fJB J 1<p1 dx = A'iftp(a)C(8). (2.25) 

The proof is the same as that of (2.1). From (2.22) 
we get 

J Irp(w"')I P~ .. _,.(~+.) .. _,(dvJ"'-I) dxm- 1 

< ~ ~ J P (d ... -1) d .. -1 _ ~, z"'-l.(z+a)"'-l. W X 
".0 n. 

x P •••• (dvJ .. ) 1 Dxg(w") I· (2.26) 

Now 

D ( ") D ( .. -1 ") - ( ... -1 It) xg W = "g w , w = <p .. w ,w. (2.27) 

Therefore 

... < ~.kt: R '\ .(",-1) .1. ( "'-I) 
- £..J n' 1 .... + .. -1" 'I'fl a 

",-0 • 

~ (m-l)! [e-2flBR-(m-l) 1(1-lzIIRnA'("'-l) iftia"'-l). 
(2.28) 

Integrating over the last trajectory and comparing 
with (2.21) we obtain finally 

J Ix(x"', x'" + am)! dX"'-l S !z!'" (m - I)! 

X [e- 2flBR-( .. -1) 1(1 - !z I!R)"']AP 
(m-l) "'fl(a"') , (2.29) 

which means that x(x"', y"') is an integrable function 
of the "distances" between the pairs of variables 
(x;, y;) and has an exponential decrease as a function 
of the distances of the two points of each pair. 

A weaker form of the CP is obtained by integrating 
over am, 

J !x(x"', y"')! dx'" dy"'-1 s !z!'" (m - 1)1 

X [e- 2fJBR-("'-I) 1(1 - IzI/R)"']A·(m-l) (2.30) 
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and will be shown in Sec. 4 to have an analogue 
in the QS case. 

3. ALGEBRAIC PRELIMINARIES IN THE QS CASE 

We now develop the corresponding algebra in the 
QS case. The variables are now trajectories w of 
length (defined as the length of the t interval j{3, 
j integer 2:: 1.) Finite sequences of such trajectories 
are noted X, Y, "', etc., or (w m

, j"'), by which is 
meant that the trajectory Wi has the length ji{3 
(i = 1, ... , 111). 

Let Ao be the complex vector space of sequences 
of essentially bounded measurable functionals of m 
trajectoriesh=[h(wm ,j"'),ji=l,2, ... ;m=O, 1, ... J 
such that J P~: .• m (dwm) h(w"', r) be Lebesgue 
measurable functions of (xm, ym). For m = 0, there 
is only one component, which is a complex number ho• 

Let A ~ be the subspace of these h for which ho = O. 
We define a product * in Ao by (hI, h2 ) -7 h = hI * h2 

heX) = L hI (Y)h2(X - Y). (3.1) 
YcX 

E then becomes a commutative algebra with unity 1. 
We define a mapping r as the * exponential. r maps 
A ~ onto 1 + A ~ and has a unique inverse r- I

• 

The subset of those h E Ao the components of 
which are totally symmetric with respect to their 
arguments is a subalgebra ACAo. From now on, 
we consider only A. 

The order of the trajectories in the sequences X 
being now immaterial, the variables r can be de­
scribed by a partition of m into integers 1'; such 
that L 1'; = m, j entering "Yi times in j"'. These 
I' = ("Yi) can be conveniently thought of as classes 
of permutations of II'I = L hi variables consisting 
of 1'; cycles of j elements (j = 1, 2, ... ) (see I-Sec. 5). 
From now on, we use systematically the following 
notations: 

x = w'" = (wm
, j"') ~"Yi = m, 

Y = w~ = (w", j") ~a; = n, 

hi = ~fyi = q. 

lal = ~jai = r. 

I' = 1" + I'" means: 1'; = "Y~ + "Y~' for all j. 

"Y'.s; I' means: "Y~.s; "Yi forall j. 

If 1" .s; 1', I' - 1" is the partition 1''' defined by 
"YV = "Yi - 1': for all j. Now let it be the complex 
vector space of sequences of Lebesgue measurable 
functions of m pairs of points (x;, Yi) E R', j = 
I, ... , m; m = 0, 1, '" , which are totally E­

symmetric (symmetric for E = +1, antisymmetric 
for E = -1) with respect to the variables x and Y 
separately. It is naturaf to define a product in E by 

7 T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959). 
S. Weinberg, Phys. Rev. 133, B232 (1964). 

hI' h2 -7 h = hI '* h2 (3.2) 
hCX) = L E

8hI (S)h2(X - S), 
8 

where X = (x"', ym). 
S = (x', yO) is obtained by selecting independently 

8 variables x out of m, and 8 variables y out of m - - ' X - S consists of the remaining variables. The 
variables x and yare in the same order in Sand 
in X - S as they were in X. 

E8 is + 1 for E = + 1, and the signature of the 
product of the permutations which transform xm 
into x', xm

-. and ym into y', ym-. respectively, for 
E = -= 1. E is then a commutative algebra with 
unity 1. Let E+ be the subspace of those h E E 
for which ho = O. We define the mapping f' from 
E+ to 1 + E+ as the *" exponential. One has for 
instance, for h E E+ 

(f'h)o = 1, 

(f'h) (x , y) = hex, v), 

(f'h)(X1Yl' X2Y2) = h(XlYl, X2Y2) 

+ h(XI, Y1)h(X2, Y2) + Eh(XIY2)h(x2 , VI)' (3.3) 

f' is one to one from E+ onto 1 + E+ and has a 
unique inverse f'-1. 

We next define a linear mapping J from A to E: 
h E A -7 h = Jh E E by 

ho = ho 

h(x'" , ym) = [L (Er]m 
>r 

x L.;: E
q

+", J P;:.r(ym)(dw"')h(wm, j"'). (3.4) 
I 

The first sum extends over all permutations 7r of 
m variables. The unexplained notations are the same 
as in I [see I: (5.4) ]. J is not defined on: the whole 
of A. However, it is easy to exhibit a family of 
subalgebras of A where J is defined. For any real 
~ (0 < ~ < 1) and for any sequence (0') = (0'0,0'1, ... ) 
of strictly positive real numbers, we define E (a) ~ as 
the linear space of those h E A for which 

1 
IIhll(aH = SUP-t esssup Ih(w"') I < +00. (3.5) 

",7 O'm<;,q 

E(a)E is a Banach space with IIh/l(a)E taken as the 
norm of h. J is defined in each E (q) ~ and for h E E (a) h 

we have 
'" 

IJh(xm, ym)1 .s; O'mml IIhll(aHI L ~i/lI2}mA-Ym. (3.6) 
1 

(One could define Banach spaces E(a)ECE such that 
J be a continuous mapping from E (a) E to E (v) E. but 
we do not make use of this fact.) 



                                                                                                                                    

REDUCED DENSITY MATRICES OF QUANTUM GASES. II 257 

We next define e~ = Vcal E CaH' e~ is a vector 
space. (The most natural topology for e~ is the 
inductive limit of the topologies of the ECal~; e~ is 
then a locally convex vector space.8 We do not make 
use of this fact.) As an immediate consequence of 
the following lemma, ef is a subalgebra of A. 

Lemma: If h' E ECa'H, h" E ECa"H, then h 
h' * h" E E(al~' where (0') is defined by 

and IIhll(al~ ~ Ilh'll(a'l~ Ilh"ll(a"H' 

In fact, let Ih'(X)1 :::; 11h'11(a'HO'~~· 

Ih"(X) I :::; 11h"II(a"HO"~~·· 

Then 

Ih(X) 1 ~ }: Ih'(S)1 Ih"(X - S)I 
SeX 

(3.7) 

side of (3.10) is zero unless k :::; m. Then 

1 rh(X) I 

(3.11) 

Due to the condition k ~ m, the series in (3.11) 
is in fact a finite sum. For fixed h, therefore for 
fixed Land (0'), it depends only on m. Therefore 
rh E E(a'l~ for some (0-') and therefore rh E e~. 
Consequently, J r is defined on each e~ and there­
fore also on e+. The interest of the preceding con­
siderations comes from the 

Theorem: J is a homomorphism of the algebra e 
into the algebra E. 

Proof: The only nontrivial point is to show that 
for hll h2 E e, 

(3.12) 
L Ih'(w'Y')1 Ih"(w'Y-'Y')1 

.. ~'e .. ~ In fact, let X = (xm, ym). 

(3.8) 

where m' = L "ri. The last sum in (3.8) can be 
written as: 

m 

~ ,,, f f "" £..J O'm'O'",-m' coe . 0 Z 
".'-0 

The last sum in (3.9) factorizes into the product 
of the contributions of the various j, each of which 
is equal to (1 + z) 'Y I, and is therefore equal to 
(1 + z)"'. From this the lemma follows immediately. 

J is then defined on each algebra eEl and therefore 
also on the algebra e = VO<~<1 e~. We next show 
that r maps each e~ into 1 + e~. In fact, let h E E7a) ~: 

{
lh(X) I :::; LO'm~· where L = IIhll(aH 

ho = O. 

Repeated use of the preceding lemma gives 

where the last sum extends over the partitions (mr ) 

of m (m = ml + .,. + mk) such that mr ~ 1 
for r = 1, '" , k. The last restriction comes from 
ho = 0 and implies in particular that the right-hand 

8 Bourbaki, Espaces vectoriels topologiques, (Hermann & 
Cie., Paris, 1953). 

J(hl * h2)(X) = (}: er
)", L: rm 

jm 

(3.13) 

We can use the same labeling for x'" and w"'. Choosing 
S ex is then equivalent to the choice of a subfamily 
x' e xm which will be the x part of an S. The sum 
over r is irrelevant in the present proof. Now for 
a given choice of x', any permutation 11'", of the 
y's is expressible in a unique way as a product 
1I'm = 1I',1I'm_.1I", where 11', and 11'",_. act only on the 
subfamilies y' and ymH of ym which will be matched 
to x' and x m

-. respectively, and where 11" does not 
change the relative order of the y's in each of these 
two subfamilies. 

The summations on 11'. and 11'".-. for fixed 11", 

together with the sum over r and the integration, 
when applied to hl(S) and h2 (X - S), give Jhl(S) 
and Jh 2(X - 13) respectively. On the other hand, 
the summation over S and over 11", in view of 
e

r
' = eS

, give the definition of the *' product; 
whence the result. 

From the preceding theorem it follows that 
J r = r J wherever both sides are defined, and in 
particular in e+. Therefore the diagram of Fig. 2 
is commutative. 

We next define derivations in A as previously. 

(3.14) 

(3.15) 
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E+~E 

Fig. 2 

The functions in A are symmetric, therefore the 
derivations commute. As previously 

D(.,.k)(hl * h2) 

x E hl(W~')h2(wH') = f Z· E J d.w' 
w"cw' r-O a(r) 

E a(w'')a(wH ') II C:/hl(w6')h2(WH '). 
",;6 ; 

Now 

(3.23) 

whence the result. 

Now let U = (U(w'Y» be a sequence of real 
measurable functions satisfying 

= (D( ... k)hl) * h2 + hi * D( ... k)h2 (3.16) Uo = 0, U(w'Y) ~ -q[3B, (3.24) 

D( ... k)(rh) = D( ... k)h * rh for h E A +. (3.17) where B is a constant (real 2': 0) and let f E A 

Now let (a;(w), j = 1, 2, ... J be a sequence of be defined by 
measurable functions of one trajectory w of length jf3 (3.25) 
such that 

J P!.(dw) dx la;(w) I < + 00 (3.18) 

and let a be the sequence of functions (a(w"', r), 
m = 0, 1, ... J defined by 

.. 
aO = 1 a(w"', r) = II aj.(wk)' (3.19) 

k-I 

To any h E A we associate the following formal 
series in Z 

(3.20) 

or 

where Ea(b) means sum over a, b being held fixed; 
E = ±1 and 

d.w' = II (1/ OJ !)[(Ei+1 h)P!,(dw) dx]8 1
• (3.21) 

j 

Then we have 

Lemma: h ~ (az, h). is a homomorphism of the 
algebra A into the algebra of formal series in z. 

Proof: The only nontrivial point is to show that 
for hi' h2 E A, 

(3.22) 

Now: 

(az, hi * h2). = E z· 2: J d.w
8
a(w

6
) 

r-O 6(r) 

As previously, U represents the interactions of a 
system of identical particles (bosons for E = + 1, 
fermions for E = -1), and will be given an explicit 
expression later on for a system with two-body 
forces only. 

Let A be a bounded open region and aj(w) be 
the characteristic function of the set of the con­
tinuous trajectories of length j[3 which stay in A. 
The grand partition function (GPF) of the system 
is defined by 

Z. = (aAz, f) •. (3.26) 

It follows from (3.24) that Z. is an analytic function 
of Z for Izi < e-{JJJ and satisfies I: (5.12) 

{
V ClzllB)j} 

IZ.I ~ exp \.' L: .. /2+1 
1\ ,-I J 

(3.27) 

and Z.(O) = 1. (Here V is the volume of A.) There­
fore log Z. is analytic in a neighborhood of the 
origin and 

Z. = exp (al..z, g)., where g = r-If. (3.28) 

The RDM are now defined as the components of 
ih = J PA in terms of the correlation functionals 
(Pl..(W"', r), m = 1, ... ) = Pl.. E A\ where 

Pl..O = 0, Pl..(X) = al..(X)zl!--A(X) (m > 0) 

!/tAO = 1, !/tA(X) = (I/Z.)(al..z, Dxf). 

(m> 0). 

(3.29) 

(3.30) 

We define as previously rPx E A, Xl.. and epA E A +, by 

rPx = r l * Dxf (3.31) 

1 + Pl.. = rXl.. 

!/tl.. = repl..' 

(3.32) 

(3.33) 
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Then 

(3.34) 

(3.35) 

Lemma: Let </> ~ O. Then the sign of <px(Y) is ( - )~ 
[Recall that Y = (,,/', 1").J K(Wtil, S) has the sign 
of ( - )' and the result follows by induction on m + n 
as previously. 

lh(X) = (aAZ, <PX)' 

XA(X) = aA(X)zqIf'A(X) 

If'A(X) = (aAZ, Dxg) •• (3.36) Then we have: 

We now restrict ourselves to systems of particles 
interacting through a two-body potential</> satisfying 
Conditions (a) ~ (d) of 1. U becomes: 

U(X) 

= lf3 dt{tt OSi<ftiH </>[Wk(t + j(3) - wket + nm 

+ ISk~S" i~ i%ol </>[Wk(t + j(3) - wdt + j'(3)]}. 

(3.37) 

From (3.31), one gets the nonintegrated form of 
the KS equations [I: (6.8)J 

Lemma: Let 4> ;?: O. In the expansion of PACW"') 
in powers of z, for fermions only (E = -1), the 
coefficient of z~+r has the sign of (- y. 

We get from (3.34) 

y;(X) = 1 + t z· E J d.,,/aAC(6)<pX(w'). (3.43) 
r-I 6(T) 

Now d.w6 contains E2:(i+I)6/ = Er+". 

<px(w6
) has the sign of (- )". Therefore for bosons 

(e = +1) we can conclude nothing. For fermions, 
all terms with given r have the same sign, and the 
coefficient of zr has the sign C - ) r, whence the result. 

<px(Y) = exp [-FI(X)] 

X E K(wI, jl' S)<pi'+8{Y - 8}, 
BeY 

with 

Theorem: In the Mayer expansion ih(x, x) = 
L,b,z', for fermions with repulsive interactions 

(3.38) (4);?: 0), b, has the sign of (_)1+1; Ib,l ;?: Ib~O)I, 

where b:O l is the corresponding coefficient for a free 
gas at the same temperature. 

FI(X) = lf3 d{Si<ft;'_l 4>[WICt + j(3) - WI(t + j'(3)] 

+ ~ i% :~ 4>[WlCt + jfJ) - WkCt + j'(3)]} (3.39) 

K(wt, jl, S) = II {exp [-1f3 dt 
... IES 0 

X i~ I~ 4>[WICt + ZfJ) - wet + l'fJ)] ] - 1} (3.40) 

The proof is the same as previously. 

Similarly, we obtain the Mayer-Montroll equa­
tions in nonintegrated form: 

<px(Y) = exp [-UeX)] 

X E <Ps(X - S)K(X, S), (3.41) 
BeY 

where 

K(X, S) = II {exp [-lfJ dt 
( ... ilES 0 

X t i% l~ 4>[Wk(l + l(3) - wet + l'fJ)] ] - 1}. 
(3.42) 

We conclude this section with an algebraic result 
valid for purely repulsive potentials only. We first 
prove: 

This follows immediately from the preceding 
lemma, applied to 

PACW, J) = aA(w)z{ 1 + ~ (-yzT 

X positive coefficient] (3.44) 

PACX, y) = t C - y+1 J p!~(dw)pACW, 3)· (3.45) 

All the terms contributing to a given power of z 
have the same sign, and the first term in the expan­
sion (3.44) gives the free-gas part. 

4. BOUNDS ON THE RDM AND CP IN THE QS CASE 

Throughout this section, the potential 4> satisfies 
Conditions (a) ~ (d') of I. In particular, 4> is 
repulsive (4) ~ 0). The notations are these of Sec. 3. 
We now deduce bounds for PA from the KS equations 
(3.38). We first look for bounds of the type 

J l<px(w~)1 d+W6 ~ P('Y, 0). (4.1) 

We proceed by induction on q + r. A sufficient 
condition follows from (3.38): 

Ph, 0) ~ exp [-Ft(X)] 2: Ph' + 0', 0 - 0') 
6'$0 
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where w." is obtained from w., by removing (WI' k). 
(4.2) and the inequality I (A2.8) 

Y J P!z(dw) dx IK(WI, k; w, j) I ::; k ~~) , (4.3) 

where 

C(f3) = (1/}..')(3 J 1<I>(x) I dx, (4.4) 

give the sufficient condition: 

P('Y, 0) ~ sup L: P('Y' + 0', 0 - 0') 
k('Y>~l) 8',;;8 

x II (II oj!)[kC(f3)/j'/2]i' j. (4.5) 
; 

Instead of solving for the uninteresting P('Y, 0), we 
next look for bounds of the type 

sup L: P(-y, 0) ::; P(q, r). (4.6) 
., (0) ! (r) 

Comparison with (4.5) gives the sufficient condition 
r 

P(q, r) ~ sup L: P(q - k + r', r - r') 
l:$k:${l r'-O 

1 [ C({3)]!' j 

X L: II 'I k -:;(2 , 
8' (r') ; 0;. J 

or equivalently 
r 

P(q, r) ~ sup L: P(q - k + r', r - r') 
l:$k$Q r'-O 

X coefficient of r' in the expansion of 
exp (Dk) as a power series in ~, 

where 

(4.7) 

(4.8) 

This series converges for I~I ::; 1. (4.8) suggests the 
obvious solution 

P(q, r) = const X e(o+r)D Ir. (4.10) 

The induction procedure begins at q + r = 1, 
which implies q = 1, r = 0, P(I, 0) = 1. Therefore 
we can take the constant as exp (-D). Finally 

sup L: J d+w! Ir,Ox(w!) I ::; exp [(q + rr - I)D]. 
.. 7(0) i(r) ~ 

(4.11) 

Comparison of (4.11) with (3.29), (3.34) shows that 
for Izl < R = ~ exp (-D), the power series for Y;A 
and PA, as well as the corresponding series for infinite 
volume obtained by replacing etA by 1: 

(4.12) 

converge uniformly and satisfy 

I y;(X) I ::; (~/R)°-I(1 - IzIIR)-I; 

Ip(X) I ::; (lzI/~)~O(lzl/R)°-\1 - IzIIR). 

(4.14) 

(4.15) 

The last bound is better than that given in I by 
a factor (Izl/R)"-I. The P defined by (4.15) coincide 
with the limits of PA obtained in I as the volume 
becomes infinite. The proof is the same as previously. 

We can obtain better bounds from the Mayer­
Montroll equations (3.41). (The potential <I> is repul­
sive, <I> ?: 0.) Similar methods show that 

sup L: J d+w! Ir,Ox(w8
) I 

.. 7 (.) !(r) 

::; exp [(q ~rr - I)D] exp [- U(X)J 

Ip(X) I ::; <lzl/~)r(lzllR)°-II/(1 - IzIIR) 

X exp [- U(X)J. 

(4.16) 

(4.17) 

For physical, i.e., real positive values of z, in the 
case of Bose statistics only, we can obtain better 
bounds on PA directly.3 From the definitions (3.29), 
(3.30), and the inequality 

exp [- U(w"+!)] 

::; exp [- U(w'Y)] exp [- U(w!)] , (4.18) 

we obtain immediately 

PA(W") ::; ZO exp [- U(w'Y)]. (4.19) 

From the various bounds on PA and the relation 
ih = J PA, one obtains as previously corresponding 
bounds for the RDM themselves. 

We now prove a CP for p(x"', y"'), i.e., a property 
of decrease at infinity of the components x(x"', y"') 
of X E E+ defined by 

1 + p = rx. (4.20) 

We define X and 'P in the same way as XA and 'PA, by 

1 + P = rx (4.21) 

x(X) = z·'P(X) (4.22) 

'P(X) = t zr L: J d.w! Dxg(w!). (4.23) 
r-O !(r) 

More precisely, we prove that X (x1n, y1n) is an 
integrable function of the differences of its arguments 
by obtaining a finite upper bound for the integral 

(4.24) 

p(X) = z°y;(X) (4.13) Let 
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d~3 = u /, [P~.(dw) dx dyJ3 1 

1 (}t· 

and 

T = W
8 fJ = (fJ;) IfJl = L jfJ j = s. 

We first prove the following 

Lemma: 

where 

A = ""C(ft) = f3 f 1cf>1 dx. 

Proof: We first look for bounds of the type 

(4.25) 

(4.27) 

The next step is to look for bounds of the type 

sup L l: p(e, "I, 5) ~ pes, q, m, r). (4.33) 
8(0) 'Y(m,o) 3(r) 

From (4.32) we get by summation over "I, 5, the 
sufficient condition 

r m 0 

pes, q, m, r) ~ sup L L L 
l:$;k:::;. r'-O m'-O q'-m' 

P (S - k + q' + r', q - q', m - m', r - r') 

X coef. of r' 

X coef. of ~o' 

(kA)m' 
m exp (kD) X --,,­

m. 

(4.34) 

The last step is to look for bounds of the type 

L pes, q, m, r) ::; pes, m, p). (4.35) 
1le;frJ., r~O. a+r-p 

From (4.34) we get the sufficient condition 

m " 

(4.28) pes, m, p) ~ sup L L 
1~k5. m'=O p'-m' 

We proceed by induction on s + q + r. We rewrite 
the KS equations as 

cPT(X, Y) = exp [-F1(T)J L K(WI, k, X') 
X'eX 
Y'cY 

X K(WI, k, Y')cPT'+X'+Y'(X - X', Y - Y'), (4.29) 

where X' = w'Y', Y' = w8
', and T' is obtained from 

T by removing (WI' k). (4.28) and (4.29) give the 
sufficient condition on P: 

p(e, "I, Il) 

~ sup L LP(O'+"I'+Il',"I-"I',5-5') 
k(8.~I) 'Y'S'Y 3'S3 

X J d~'Y' IK(WI' k, w'Y')1 f d+w3' IK(WI, k, w3')1· 
(4.30) 

From (4.3) and the similar inequality: 

P (s - k + p', m - m', p - p') X coef. of ~", 

in exp [kDJ[(kA)m' /m'!J( t j~;r', (4.36) 

which suggests the solution 

1 1 
pes, m, p) = exp (p + s - 1)DJ ~-, 

<; m. 

X [(p +s)A (1 ~ ~)2J, (4.37) 

where we have already used the starting point of 
the induction procedure: 

s + p = 1, which implies s = 1, p = m = 0, 
for which P(l, 0, 0) = 1. 

The lemma follows from (4.28), (4.33), (4.35), 
and (4.37). We finally prove the CPo From (4.23) 
we get 

'" f P!.(dw) dx dy IK(WI' k, w, m ::; kjA, (4.31) J m ::; m! L L (m - I)! 

where A is defined by (4.27), and which is easily 
obtained by the method of I (Appendix 2), we 
obtain the sufficient condition 

P(O, "I, 5) ~ sup L L 
k(9t~l) 1"$.')' 3'58 

P (0' + "I' + 5', "I - "I', Il - 5')(kAr' 

X IT ~ j"f'1 IT ~ [kC(f3) ~J~'I 
; 1';! j Ilj! f/2 

(4.32) 

A.-I "'I'(m-I) 

X J P;.(dw) dx d~'Y' Izlo'+k 

X f Izlr L J d+W3 ID(.,.k;.,y')(J(w3)1. 
r-O 3(T) 

(4.38) 

Now 

D(."k;.,y' )g(w3) = D(OJ,k)(J(W'Y'+3) = cP(".k)(W'Y'+3) 

and f p~. (dw) dx = 1. Therefore 
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'" '" '" 
J", ~ m! (m - I)! L: L: L: /z/k+·'+r 

k-l a' -m-l 1'-0 

x L: L: sup J dw'Y' d+wa 
/<p< ... k)(w'Y'+a)l· 

,.'(m-l.a') a(r) (w.k) 

(4.39) 

We substitute the bound (4.26) in (4.39) and obtain 
after some straightforward algebra: 

J", ~ ml [ A~ 2Jm-l ~ t (£1)l tm-1 
(1 - ~) 1 - ~ '-m \R 

X (1 - e-m
+1

), (4.40) 

JOURNAL OF MATHEMATICAL PHYSICS 

where the last series is absolutely convergent for 
any /z/ < R. 
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This paper contains a generalization of results described in previous work. A general formula is 
given for the total cross section for two-photon ionization of a hydrogenic state. An implicit method 
for evaluating the second-order radial matrix elements that occur in this expression is described in 
detaiL Numerical results were obtained for the states with principal quantum numbers n = 1 through 
5. It is concluded that, when both one-photon and two-photon ionization are energetically possible, 
the effect of the latter may be expressed as an intensity-dependent correction to the Gaunt factor 
which may therefore be written as G = gl + rD..Bg •• Here gl is the usual Gaunt factor, I is the inten­
sity of the light in W cm-', X is the wavelength in em, g. is a dimensionless factor of order unity, and 
r is a constant given by r = 0.1504 W-l cm-l. Gra.phs of g. are given as a function of electron energy. 

These results do not include the effect of three-photon processes, which can also contribute to the 
first-order intensity-dependent correction to the Gaunt factor as a result of interference between the 
first- and third-order amplitudes. 

I. INTRODUCTION 

THE work described in this paper is a continua­
tion and a generalization of that described in a 

previous paper, 1 hereinafter referred to as L It is 
motivated by a desire to calculate the two-photon 
contribution to the absorption coefficient for optical 
radiation traversing a hydrogenic gas. For this 
reason, only total cross sections rather than dif­
ferential cross sections are considered. A general 
formula for the total cross section for two-photon 
ionization of a hydrogenic state described by princi­
pal and orbital quantum numbers (n, l) is given in 
Sec. II. 

In Sec. III it is shown how to generalize the method 
of calculating second-order matrix elements described 
in Sec. 3 of I so as to be able to compute such matrix 

* This research was supported by the Advanced Research 
Projects Agency and was monitored by the U. S. Air Force 
Weapons Laboratory under Contract AF-29(601)-5845. 

1 W. Zernik, Phys. Rev. 135, A51 (1964). 

elements for photon energies above the one-photon 
ionization threshold and for all possible initial and 
intermediate states. 

The analysis described in Sec. III enables one to 
specify unique mathematical procedures for com­
puting two-photon cross sections. In Sec. IV the 
computational technique is described in detail and 
the results of some numerical calculations are given. 

Above the one-photon threshold, the two-photon 
cross sections are smooth functions of the incident 
frequency. This fact enables one to infer, from the 
results of Sec. IV, a two-photon correction to the 
well-known Kramers-Gaunt approximation for one­
photon ionization of hydro genic states by optical 
radiation. The result is given in Sec. Vi it can be 
expressed in the form of an intensity-dependent 
Gaunt factor which is applicable when both one­
photon and two-photon ionization are energetically 
possible. 
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where the last series is absolutely convergent for 
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n. TOTAL CROSS SECTION FOR TWO-PHOTON 
IONIZATION 

In I, a general expression for the differential cross 
section per unit intensity, for a hydro genic state 
described by quantum numbers (n, 1, m), was derived 
[cf., Eqs. (10)-(13) of I]. 

In order to derive the total cross section, one 
must first integrate this expression over the solid 
angle, making use of the orthonormality of the 
spherical harmonic Y 1m (j3, a). Next, one must average 
over the magnetic quantum numbers, making use 
of the relations 

(1) 

(21 + 1)-1 tntl m4 = ;5 l(l + 1)(312 + 31 - 1). (2) 

After some burdensome algebra, one obtains the 
following expression for the total cross section per 
unit intensity for a hydro genic state described by 
quantum numbers (n, l) 

«T .. I 211"'a 2{ 2(1 + 1)(1 + 2) 1 .. 1 12 
T = 151

0 
Epa (2l + 3)(2l + 1) PI+1.1+2 

21(1 - 1) IP .. I 12 + (21 - 1)(21 + 1) 1-1.1-2 

+ (1 + 1)(4l
2 + 81 + 5) IP'" 12 

(21 + 1)2(21 + 3) 1+1.1 

[(412 + 1) I "I 12} + (2l + 1)\21 - 1) P1-1,1 • 
(3) 

In this expression, I is the incident intensity in 
watts per square centimeter, a is the fine structure 
constant, 10 is 7.019 X 1016 W /cm', Ep is the dimen­
sionless photon energy in multiples of me"/h', and a 
is the Bohr radius. One has 

211"'aa2/151 0 = 3.831 X 10-36 cm4/W. (4) 

The quantities P >."i are dimensionless second-order 
matrix elements, given by 

In Eq. (5), II, h are the principal and orbital quantum 
numbers of the intermediate states and L is the 
angular momentum quantum number of the final 
(continuum) state. The summation includes an 
integration over those intermediate states that lie 
in the continuum. The normalization of the various 
radial functions has been defined in Sec. 2 of 1. The 
first and second radial matrix elements that appear 

in Eq. (5) are dimensionless multiples of (h' /me')5/' 
and h' /me', respectively. The energies that appear in 
the denominator are in dimensionless multiples 
of me4/h2. 

Equation (5) differs from Eq. (14) of I only in the 
presence of the small parameter E. This parameter 
may be ignored provided that one is interested only 
in the two-photon cross section for photon energies 
below the one-photon ionization threshold. How­
ever, it is essential to include the limiting process 
on E if one wishes to evaluate the matrix element (5) 
for photon energies above the one-photon threshold.' 
The way in which the inclusion of E leads to an 
unambiguous evaluation of the second-order matrix 
element is described in the next section. 

In. METHOD OF CALCULATING SECOND-ORDER 
MATRIX ELEMENTS 

As an obvious generalization of Eq. (27) of I, 
one defines the quantity 

U~L(r, Ep) 

'" rR.>.(r) 1'" R.>.(r')R~(k., r')r,3 dr' 
= lim L (6) 

,~O .->.+1 (E" - if) - E. + Ep 

Hence one has 

p>.ni(Ep) = 1'" Rnl(r)U~L(r, Ep)r' dr. (7) 

Because of the structure of the bound hydro genic 
radial functions, the quantity P >.ni can always be 
expressed as a sum of derivatives of the Laplace 
transform of U~L' which is defined by 

~L(P, Ep) = 1'" U~L(r, Ep)e-pr dr. (8) 

It is clear that the derivatives of these functions 
will be required only at the point p = l/n. 

Now, the functions rR.>.(r) satisfy the radial 
Schrodinger equation 

1 d2 [1 h(>" + l)J 2" dr2 [rR.>.Cr)] + ;: - 2r2 rR.>.Cr) 

= -E.rR.>.Cr). (9) 
2 The problem that is involved here is iust that of calcu­

lating transitions by second-order time-dependent perturba­
tion theory when transitions can also occur in first order. 
It is discussed, for instance, in L. 1. Schiff, Quantum M echanic8 
(McGraw-Hill Book Company, Inc., New York, 1955), 2nd 
ed., pp. 202-205. An alternative discussion is given in W. 
Heitler, The Quantum Theory of Radiation (Oxford University 
Press, New York, 1954), 3rd ed., pp. 163-172. It is clear 
from the latter that the addition of a negative imaginary 
part to the energy of the initial state is simply a consequence 
of the fact that this state is decaying in time as a result of 
the interaction with the radiation field. 
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Hence, by means of the closure condition, one finds 
that U ~L Cr, Ep) satisfies 

[
. 1 d2 

(En - u) + Ep + 2' dr2 

+ 1 'A('A + I)J ) c 2 -;. - 2r2 U~LCr, Ep = RLCk., r)r. (10) 

If one takes the Laplace transform of this equation, 
one finds that 8;.L (p, Ep) satisfies 

[(E . ) E 1 2J d2 S~L ,,-t~ + p+2'P 7fil---

+ (2p - 1) d~;L + [1 - 4 X(X + 1) JS;L 

1'" Rl(k., r)r4e---PT dr. (11) 

If X = 1, the term in S~L vanishes so that Eq. (11) 
is effectively of first order and can be solved for 
dS~d dp by means of a single boundary condition. 
This was the case in I where the only intermediate 
states that were required were p states. However, 
a first-order differential equation can be derived for 
any value of X. To see this, one differentiates Eq. (11) 
to obtain 

[(E . ) + E 1 2J d3S~L 
" - t~ .:I

p + 2' p dp3 

+ (3p - 1) d2S~L + [3 - ! 'A(X + I)J dS~L 
dp~ 2 dp 

= -1'" Rl(k., r)r5e---PT dr. (12) 

Equation (12) is of first order in d28;.L/dr2 if X = 2· 
By differentiating Eq. (12) in turn, one can find an 
effectively first-order equation for X = 3, and so on. 
One can also find a first-order equation for X = 0 
directly from Eq. (10). In this way, one finds that 
the general form of the first-order equation for 
d'8;.L(r, Ep)/dp' is 

[(E - .) + E +! 2J d'+lS~L 
.. tE p 2 P dp'A+ 1 

+ [(X + l)p - 1] dXS~L 
dp). 

= (_1)'+1 1'" Rl(k., r)r},+3e-PT dr. (13) 

As the dipole selection rules require that L = X ± 1, 
the right-hand side of Eq. (13) may always be 
evaluated by differentiating Eq. (15) of I either 
once or three times with respect to p. Of course, 
the solution of Eq. (13) does not determine the 

values of derivatives of S~L that are of lower order 
than X, but it turns out that such derivatives are 
never needed to evaluate the p},n~. The initial condi­
tion for Eq. (13) is an immediate consequence of 
the definition Eq. (8) and is that S~L (p, El.l) and all 
its derivatives are finite for all p such that Re p > O. 
Thus for E" + E" < 0, one can forget about the 
parameter ~ and simply determine, from Eq. (13), a 
boundary value of d'S~L/dp). at the positive value 
of p for which the coefficient of d'+lS~ddp)'+l van­
ishes. 

Above the one---photon threshold, when En + 
Ep > 0, one must proceed as follows. Setting the 
coefficient of the first term in Eq. (13) equal to zero 
gives 

a> 0. (14) 

Hence 

p = ±[i(2a)l + ~(2a)---~], (15) 

to first order in E. In order to have Re p > 0, one 
must choose the positive sign in Eq. (15). This 
determines a starting value of p that is infinitesimally 
close to the positive imaginary axis and in the first 
quadrant of the complex plane. 

One may conclude that the parameter E may be 
dropped provided one states as a boundary condi­
tion for Eq. (13) that 8;.L (p, Ep) and all its deriva­
tives are finite for all p on the positive real or positive 
imaginary axis. This condition enables one always 
to find a boundary value of d). 8;.L/ dp). at a value of p 
for which the coefficient of dHl8;.L/dp)'+l vanishes, 
since this value of p can be chosen so that the quan­
tity dH 

1 S~L/ dpH 1 is finite. 
The conclusion of the last paragraph may be put 

in another way. The condition that the solution of 
Eq. (13) be analytic at an initial value of p [chosen 
so as to be in the first quadrant of the complex 
plane and to make the coefficient of the first term 
in Eq. (13) vanish] is sufficient to select a unique 
solution. It follows that all the other (incorrect) 
solutions of Eq. (13) are not analytic at the initial 
value of p. This point must be kept in mind ill 

designing the strategy for a numerical solution. 

IV. THE NUMERICAL SOLUTION 

The differential equation (13) may be restated as 

(P2 _ o/)(dY)..ddp) 

+ 2[(X + l)p - I]Ylo.,L = 2Flo.,L(P, k), (16) 

where 

(17) 
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d>.-L+2 
F>..L(P, k) = AL(k) dp>.-LH 

{
exp [ - (2/k) arccot (P/k)]} 

X (P2 + k2l+1 ' 

(_2)L+l 
AL(k) = (1 _ e-2r1k)f 

(18) 

X [(1 + k2)(1 + 4e) ... (1 + L2k2)]f, (19) 

a 2 = n -2 - 2E = ![n-2 
- e], (20) 

k 2 = 4E - n-2
• (21) 

In Eqs. (20) and (21), and henceforth, the subscript 
on Ep is dropped. 

Solutions for Y>..L and its higher derivatives are 
to be obtained at p = l/n subject to the condition 
that Y>..L is analytic at the point p = a. By definition, 
a is positive real or on the positive imaginary axis. 
It is characteristic of the problem that no such solu­
tion exists when a is the reciprocal of a positive 
integer greater than A. The corresponding values of E 
are either unphysical in that they are below the 
two-photon ionization threshold, or they correspond 
to the resonance peaks in the two-photon cross 
section which, as pointed out in I, must be treated 
by means of the" strong signal" approach. 

It is to be recalled that 

and hence 

A = l ± 1 <t:: 0, 

L = X ± 1 <t:: 0, 

l<n (22) 

(23) 

A - L + 2 = 1 or 3. (24) 

At first glance, Eq. (16) appears to be quite inno-

Complex p- plane 

FIG. 1. Complex p plane for ex real positive. 

Complex p - plano 

p'-ik 

FIG. 2. Complex p plane for a pure imaginary. 

cent since it is a first-order linear differential equation 
with variable coefficients. The standard method of 
applying an appropriate integrating factor fails in 
this case, however, since the definite integrals so 
obtained fail to converge in the range of a's of 
interest. 

A direct numerical integration of Eq. (16) will be 
effective for part of the range of interest but will 
fail when a is near the reciprocal of a positive integer 
greater than A and p is near a, due to loss of signif­
icance in the evaluation of dY>..ddp. To circumvent 
this, it is necessary to develop a Taylor series for 
Y>..L about the point p = a. 

Since Taylor series would be required in any case, 
it was decided to develop a method of solution 
based on Taylor series alone. The computations 
were readily organized from this point of view and 
good accuracy control could be retained. This is 
the approach described below. 

A. Characteristics of the Solution 

Figures 1 and 2 show the location of the singulari­
ties, branch points and cuts for solutions of Eq. (16). 
There is a singularity at p = -a due to the form 
of the differential equation. There are poles and 
branch points at p = ±ik due to the properties of 
F>..L(p, k). 

Since k is always real the corresponding singu­
larities and branch points always appear on the 
imaginary axis. On the other hand, a may take on 
either real or imaginary values. a is real for 

1/4n' :S E :S 1/2n', 

(below the one-photon threshold) 
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and pure imaginary for 

1/2n2 ~ E 
(above the one-photon threshold). 

These two cases are illustrated in Figs. 1 and 2. The 
potential singularity at P = +a is suppressed by 
the choice of initial condition for Yu at this point. 

The strategy for solution is to form an initial 
Taylor series about the point po = a. The radius of 
convergence of this series will be limited by the 
singularities at p = ± ik for 

1/4n
2 ~ E ~ 2/5n2 

, 

by the singularity at p = -a for 

2/5n2 ~ E ~ 4/7n2, 

and by the singularity at p = +ik for 

4/7n2 ~ E. 

This series is evaluated at a point Pion the line 
connecting Po = a to p = l/n. Experience has 
shown that evaluation at half the radius of conver­
gence results in a loss of less than four digits of 
accuracy in the sum. 

At this point it is essential to keep in mind that 
the solution to Eq. (16) that one is evaluating is 
only an approximation to the correct solution, 
since one is keeping only a finite number of terms 
in the Taylor series and there are, in any case, round­
off errors in the computer operations. Consequently, 
recalling the argument of the last paragraph of 
Sec. III, one must treat the point po = +a as a 
singularity for all Taylor series expansions subse­
quent to the first. If this is not done, the small com­
putational errors arising in the first expansion will 
be amplified in subsequent expansions and may 
completely obscure the desired solution. Thus, the 
radius of convergence of all the Taylor series ex­
pansions subsequent to the first is limited by the 
point po = +a. 

Now a new Taylor series is formed about the 
point p = PI' This new series is used to evaluate 
the solution at a point P2 (see Figs. 1 and 2). The 
process is continued until the solution can be evalu­
ated at p = l/n which is the desired result. It is 
to be noted that if the individual terms of the most 
recent series are retained at each stage, the desired 
derivatives can be formed at the end by operations 
on this series. They can, of course, also be obtained 
through successive differentiation of Eq. (16) at the 
expense of some analytical work. 

It is a fairly straightforward matter to evaluate 
the number of Taylor series expansions that are re-

quired to obtain the solution at p = l/n. Let M 
denote the required number of expansions, r the 
fraction of the radius of convergence that is used 
each time, and the symbol [[xll the largest integer 
less than x. One finds that 

M = 2 + [[lOg {~ (~ ~ ~ l:\Y}]] 
log (1 + r) . ' 

1 2 
4n2 ~ E ~ 5n2 , (25) 

M = 2 + [[lOg {~ (1 ~ ~tl) }l] 
log (1 + r) -"' 

2 1 
5n2 ~ E ~ 2n2 , (26) 

[[
lOg {l (1 + n

2 

laD!}]] 
M = 2 + 2r n lal 

log (1 + r) , 

1 4 
2n2 ~ E ~ 7n2 , (27) 

M = 2 + [[lOg {~ (1 + (~)-1:122)lf~tn la l}]] 
log (1 + r) , 

4 
7n2 ~ E. (28) 

It is apparent that, generally, only a modest 
number of expansions is required since M increases 
only logarithmically as E -t 1/2n2 (i.e., a -t 0). In 
the present calculations it was found satisfactory 
to take r = 0.5. As E -t (X) , one finds from Eq. (28) 
that M -t 5. 

It is clear on physical grounds that difficulties 
are to be anticipated in the perturbation theoretic 
evaluation of the two-photon cross section as the 
photon energy approaches the one-photon threshold 
from below. This is because the resonances in the 
two-photon cross section become increasingly close 
to one another. It is apparent from Eqs. (26) and 
(27) that as the photon energy approaches the one­
photon threshold from either above or below the 
number of expansions required tends logarithmically 
to infinity. This is because the radius of convergence 
of each Taylor series tends to zero. Moreover, as 
a -t 0, a small error in the initial expansion can 
cause an increasingly large error in the final value 
of y. For these reasons, it was decided not to carry 
out the numerical calculations for la\ < 0.06. The 
maximum number of terms required in any Taylor 
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series was 100 and the maximum number of expan­
sions required was 11. 

It is shown in the following sections that this 
process can be completely automated. The series 
are formed numerically by a computer program at 
each stage rather than from explicit analytic repre­
sentations. The total process may be viewed as 
numerical analytic continuation. 

Numerical results from a computer program for 
the RCA 601 computer at RCA Laboratories are 
given in Sec. IVE. 

ao = bo/[(>' + I)a - 1]. (36) 

Consideration of Eq. (32) with po = a leads to 

_ 2bm +1 - [m + 2>.. + 2]a". > 0 (37) 
am +1 - 2[(>" + m + 2)a _ 1] , m - . 

In the computational procedure, it turns out that 
certain scaling problems are avoided if the quantities 

(38) 

(39) 

are generated rather than a". and b .... 
B. Series Solution of Eq. (16) The corresponding recursion relations are, for 

An arbitrary point Po in the complex p plane is Po,t. ±a 
considered and it is assumed that YA.L (Po) = Yo is 
known. The complex variable ~ is defined as 

~ = p - Po 

and the Taylor series for FA•L 

., 

FA.L(P, k) = 1: bmr' 
... -0 

(29) 

(30) 

is considered as known. An algorithm for its genera­
tion is described in Sec. IVC. 

Now set 

'" 
YA.L(P) = 1: a"l". (31) 

... -0 

Substitution into Eq. (16) leads to 

'" 1: {(P~ - a2)(m + I)a",+1 + 2[(>" + 1 + m)po - I]a", 
.. -2 

+ (m + 2>.. + I)a .. -l - 2bm}~'" 

+ {2pOal + 2(P~ - a2)a2 + 2(>" + I)ao 

+ 2[(>" + I)po - I]al - 2bd~ 

+ {(P~ - a2)al + 2[(>" + I)po - I]ao - 2bo} == O. (32) 

Hence, when po ,t. ±a, 

al = 2f3o - 2[(\ + I)po - I]ao ~, 
Po - a 

a .. +1 = {2f3". - 2[(m + >.. + I)po - I]a ... 

- Hm + 2>.. + I]a"._l} [em + I)(P~ - a2>rl~, 

Also, when po ::;: a 

ao = {3o/[(>' + I)a - 1], 

(40) 

(41) 

m~1. 

(42) 

(43) 

2f3",+1 - Hm + 2>.. + 2]a ... 
a",+1 = 2[(>" + m + 2)a _ 1] , m ~ O. (44) 

The recursion relation (44) exhibits directly the 
lack of existence of an analytic solution when a is 
the reciprocal of an integer larger than >.. . 

In the computer program the quantities a". are 
generated recursively along with the (3". and stored. 

C. Taylor Series for FA.L(P, k) 
One now considers the function 

G (P k) = exp [-(2Ik) arc cot (Plk)]. 
L , (P2 + k2)L+1 (45) 

(33) One differentiates with respect to p to obtain 

and 

a".+1 = {2b ... - 2[(>" + m + I)po - I]a". 

- [m + 2>.. + I]a ... -d [em + 1)(P~ - a
2)r\ m ~ 1. 

(35) 

The coefficients of the Taylor series are hence re­
cursively determined. 

At the initial point, po = a, ao is obtained from 
Eq. (16) and the condition that dYA.ddp is finite 
at this point 

Continued differentiation of Eq. (46) leads to the 
general relation 

(P2 + k2)Gi"+1l = 2[1 - (L + 1 + n)p]Gi"l 

- n(2L + n + 1)0;,"-1). (47) 

This furnishes a basis for generating the Taylor 
series for FA.L(P, k) about any point p = Po. 

Two situations can be distinguished, namely, 
>. + 2 - L = 1 and>. + 2 - L = 3. When>. + 2 -
L = 1, one has 
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X(micronsl 

FIG. 3. Two-photon cross section for H, n = 2. 

.. .. 
= L bm~" = L (3.... (48) 

tn-O ",-0 

From~q. (47) one has 

(p~ + k2)Gin+
2

) = 2[1 - (L + 2 + n)po]Gl,,+I) 

- (n + 1)(2L + n + 2)Gln ), (49) 

so that 

b - 1 {2[1 - (L + 2 + m)po] b 
.. +1 - p~ + k2 m + 1 .. 

_ 2L + : + 2 b"'_I}' 
and 

R _ ~ {2[1 - (L + 2 + m)po] R 

fJm+1 - p~ + k 2 m + 1 fJm 

_ ~ 2L + : + 2 (3 ... -I} , 

with 

(30 = AL(k)G2) (Po) , 

(31 = ~AL(k)G12)(Po), 

being generated from Eqs. (45)-(47). 
When A + 2 - L = 3, one has 

(50) 

(51) 

(52) 

(53) 

.. .. 
= L bm~m = L (3m' (54) 

m-O m-O 

As before 

(p~ + k2)Gl"H) = 2[1 - (L + 4 + n)po]Gl,,+3) 

- (n + 3)(2L + n + 4)Gln +
2

) , 

which leads to 

b - 1 {2[1 - (L + 4 + m)po] b 
m+l - p~ + k2 (m + 1) m 

_ em + 3)(2L + m + 4) b } 
m(m + 1) ... -1 , 

R _ ~ {2[1 - (L + 4 + m)po] R 

fJm+l - p~ + k 2 m + 1 fJ .. 

_ t em + 3)(2L + m + 4) R } 

<; m(m + 1) fJm-l , 

with 
(30 = AL(k)G13

) (Po), 

(31 = ~AL(k)G14)(Po), 

being generated from Eqs. (45)-(47). 

D. Calculation of the Plln}. 

(55) 

(56) 

(57) 

(58) 

(59) 

If one now makes use of Eqs. (7) and (8), and the 
well-known general expression for the R"I(r), one 
easily finds that 

.. I 1 [4(n + l)! Jl(2)1( )1 
PilL = (2l + I)! (n - l _ i)!n4 n -1 

X {F[ -en - l - 1), (2l + 2), -~ :PJ 

(60) 

where F is the confluent hypergeometric function 

a 
F(a, (3, x) = 1 + (3.1! x 

a(a + 1) 2 + (3((3 + 1).2! X + .... (61) 

One can now find the cross section per unit in­
tensity per electron for each subshell from Eq. (3), 
and the cross section per unit intensity per electron 
for each shell from 

1 ,,-I 

Un = 2 L (2l + l)u"I' (62) 
n 1-0 
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E. Numerical Results 

The cross sections per unit intensity were cal­
culated in detail as a function of wavelength for 
the states with n = 2 and n = 3. The results are 
shown in Figs. 3 and 4, respectively. One notes the 
expected resonant structure of the two-photon cross 
section for photon energies below the one-photon 
threshold and the smooth behavior (varying ap~ 
proximately as A6

) for photon energies above this 
threshold. Additional calculations, for photon ener~ 
giea above the one-photon threshold only, were 
camed out for n = 1,3, and 5. 

V. TWO-PHOTON CORRECTION TO THE 
GAUNT FACTOR 

On the basis of the numerical calculations des­
cribed in Sec. IV, one may induce the following 
result: 

When both one-photon and two-photon ionization 
are energetically possible, the average cross section 
(in square centimeters) per electron in the n shell, 
for a hydrogenic atom with nuclear charge Z, for 
ionization by light of wavelength A(cm) and intensity 
1 (W/cm2

) is 

u,,(Z. :>") = (1.045 X 1O-2)[Z4n- SX3g1 

+ I(I;I;>..;3)Z4n-SX6ga}. (63) 

The first term in Eq. (63) is the well known Kramers~ 
Gaunt formula; gl, called the Gaunt factor, is a 
number which depends slightly on nand ;\. but is of 

).{microns} 

FIG. 4. Two-photon cross section for H, 11, = 3. 

--- ~c::;=1 

I , I , I ,~ I ~L.- I i 
4 S • ~ m M ~ 

ELECTRON ENERGY leV) 

FIG. 5. The numerical factor g2 as a function of the energy 
of the electrons produced by two-photon ionization for 
photon energies above the one-photon threshold. 

order unity.3 The second term is the result of the 
present investigation; the precise value of the numeri· 
cal factor ga, like that of gl, depends slightly on n 
and )., but it is also of order unity. lois the atomic 
unit of itensity (7.019 X 1016 W /cm2

) and Ao is the 
atomic unit of wavelength (455.88 A). The induction 
of the second term from the numerical calculations is 
sin1plified by the fact that one expects an 11,-6 de-­
pendence, just as in the first term, since this clearly 
arises from the energy density of electron states in 
the hydrogen atom. Furthermore, once the A de-­
pendence has been established, the Z dependence 
follows from the general structure of the perturba­
tion theory result [ef. Eq. (3) of I}. Thus, the numeri­
cal calculations are required only to determine the 
A dependence and a numerical factor. 

The above result may be expressed more simply 
by saying that, at high intensities, One should use 
an intensity-dependent Gaunt factor given by 

3 For a statement of the Kramers-Gaunt formula and Bome 
indication of its application to astrophysical problems, see, 
for instance, C. W. Allen, A8trophysical Quantities (University 
of London Press, London, 1963), 2nd ed., pp. 9()-'91; M. 
Schwartzschild, Structure and Evolution oj the Stars (Princeton 
University Press, Princeton, New Jersey, 1958), pp. 63-64. 
For the original papers, see H. A. Kramers, Phll. Mag. 46, 
836 (1923); J. A. Gaunt, Phil. Trans. A229, 163 (1930). 
For some of the subsequent work see footnote 28 of I and 
H. Mayer, Los Alamos Report LA-647 (:March 1948); W. J. 
Karzas and R. Latter, Astrophys. J. Suppl. 6, 167 (1961). 
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(64) 

where gl is the usual Gaunt factor, of order unity, 
and 02 is a similar factor also of order unity, shown 
in Fig. 5. The constant! is given by 

r = I~I)..~3 = 0.1504 W-1 cm -I. (65) 

The result expressed by Eqs. (64) and (65) enables 
one to make quantitative statements regarding the 
magnitude of two-photon effects for the absorption 
of laser radiation by hot plasmas. 

The results shown in Fig. 5 suggest that g2 is 
probably of order unity for all n, with X in the optical 
range. It follows that the first-order intensity­
dependent correction to the Gaunt factor is prac­
tically independent of both the effective nuclear 
charge Z and the principal quantum number n. 
Consequently, for a hot gas, this correction is inde­
pendent of the temperature of the gas and should 
not depend very much on the atomic constituents 
either. Further, since one can derive the cross section 
for free-free absorption from that for bound-free 
absorption by simply replacing the density of states 
for a bound hydrogenic system by the density of 
states in the continuum/, it follows that Eqs. (64) 
and (65), with g2 = 1, should be approximately 
valid also for the free-free transitions. 

, H. A. Bethe and E. E. Salpeter, Quantum M echanic8 of 
One and Two Electron Atoms (Academic Press Inc., New 
York, 1957), Sec. 78. 

If one sets 02 = 1 and X = 6943 A one finds, in 
the present approximation, that the Gaunt factor 
is increased by 1% at an intensity of approximately 
2 X 1011 W /cm2

• However, this conclusion does not 
take into account the possibility of third-order 
processes. Some of these processes, consisting of the 
absorption of two photons and the induced emission 
of one photon, can lead to the same continuum st~tes 
as the first-order process. Consequently, there IS a 
term in the cross section arising from interference 
between first- and third-order amplitudes, which is 
linear in the intensity.s The results obtained by 
Rand who has made an approximate calculation , 
of free-free absorption at high intensities using 
methods quite different from those described in the 
present paper, suggest that the net first-order in­
tensity dependent correction to the Gaunt factor 
is in fact negative.s However, the absolute magni­
tude of the correction is still determined in his 
theory by the ratio of tlX3 to unity. 
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In this paper complex forms of the third- and fourth-order coherence functions are defined using 
analytic signals. The relations between the complex forms and the real forms are given in detail. It 
is shown how to use the complex forms in the solution of radiation problems. The quasimonochromatic 
approximation greatly simplifies the calculations and this simplification is discussed for radiation 
problems in terms of the complex forms. The paper concludes with a discussion of quasimonochromatic 
radiation from a modulated incoherent source representing, perhaps, a self-luminous turbulent region. 

1. INTRODUCTION 

I N order to describe electromagnetic fields with 
stationary statistical properties much attention 

has been given to the properties of the second-order 
moment called the mutual coherence function. 1 

If E; (x, t) is the field variation, the real form of the 
mutual coherence function 8;~(Xl' X2 , T) is defined as 

(1) 

where the brackets, ( ), indicate a time average, 
and the subscripts indicate vector components. 
It has proved convenient for the solution of radia­
tion problems, however, to also introduce a com­
plex form of the mutual coherence function, 
8;k(Xl, X2 , T), defined as 

8jk (X1 , X2 , T) = (Ej(x1 , t + T)Et(x2, t», (2) 

where Ej(x, t) is an analytic signal1-3 [* indicates 
the complex conjugate], defined as 

Ej(x, t) = E;(x, t) + iE;(x, t), (3) 

E;(x, t) being the Hilbert transform of E;(x, t). 
Superscripts denote real and imaginary parts. 
[Care must be taken to properly define the manner 
of taking the limit in Eq. (2) and of defining the 
Hilbert transform since E~(x, t) exists for all time. 
In the interests of continuity however, we defer this 
point until Sec. 2.] 

Recently attention has been given to higher 
moments of the electromagnetic field and it is the 
purpose of this paper to consider a convenient 
complex form to associate with the real forms of the 
third- and fourth-order coherence functions, 

* This work has been supported by The Army Research 
Office, Durham, North Carolina, Grant DA-ARO (D)-31-
124-G331. 

1 M. Beran and G. B. Parrent, Jr., Theory of Partial 
Coherence (Prentice Hall, Inc., Englewood Cliffs, New Jersey, 
1964). 

2 D. Gabor, J. Inst. Elec. Engrs. (London) 93, 429 (1946). 
a M. Born and E. W oIf, Principles of Optics (Pergamon 

Press, Ltd., London, 1959). 

and 

where 

(4) 

and 

= (E;(x1 , t)E~(X2' t + T2)E;(xa, t + T3)E~(X4' t + T4»' 
(5) 

There are many reasons for introducing a complex 
analytic signal representation. In particular, the 
definition given in Eq. (3) is equivalent to the useful 
procedure of replacing a Fourier cosine representa­
tion (assuming for the moment that it exists; see 
Sec. 2 for a proper definition): 

E;(x, t) = {' Aj(x, p) cos (-2wt + ¢(x, p» dp (6) 

by the exponential representation 

Ej(x, t) = {' Aj(x, p) exp [i( -2wt + <fo(x, p»] dp 

(7) 

(note the integral over p is only over positive 
frequencies) . 

In the exponential representation it is easy to 
insure, for example, that the function 2j (x, p) = 
A;(x, p) exp [icp(x, p)], which satisfies Helmholtz's 
equation [2; is the Fourier transform of E;], has 
the appropriate form for an outgoing spherical 
wave in the far field of a source; in an r, 0, a spherical 
coordinate system it is required that Ej(x, v) ~ 
t(O, a, p)eikr as r ~ co (k == 27rp/c). 

If the third- and fourth-order coherence functions 

271 



                                                                                                                                    

272 M. BERAN AND P. CORSON 

are defined in terms of Ej(x, t) or E~(x, t) rather 
than E~(x, t), the Sommerfeld condition will thus 
be easily met. The problem that arises, however, is 
finding what combination of Ej(Xl' tl ) and Et(x2, t2 ) 

will be most appropriate to use. In the second-order 
case it was natural to use Ej(Xl, t + 1') at point 
Xl and the complex conjugate Et(xz, t) at point XI' 
[E;(x}, t) and E't,(X2, t + 1'2) could also of course 
have been used.] With this definition it may be 
shown that 

Re [Sik(Xl • X2• 1')J = 2S;~(x,. Xz• 1'), (8) 

where Re signifies the real part. Further, it follows 
that Bil(Xl , Xz, 1') is itself an analytic signal in the 
variable 1', that is, 

1m [Bjk(x1 , X2 • 1')] = Je,[e;;(xl , X2 • 1')], (9) 

where 1m denotes the imaginary part and JeT denotes 
the Hilbert transform with respect to 1'. 

Indeed no other choice for Sjl(X l , xz, 1') is really 
possible since 4 

(Ej(Xl! t + T)Ek (X2. t» 
= (E~(Xl' t + T)Et(xz , t» = o. (10) 

For higher-order moments the choice is not so 
clearly prescribed. It is shown in Sec. 2 that 

(Ej(Xl' t)Ek(X2, t + 1'2) ••• E,lx,., t + 1'n» = 0 

n ~ 2. (11) 

but this still 'allows a freedom of choice for n = 3 
and n = 4. To remove the remaining ambiguity it 
will be required that the real part of TikI or L ik1m, 

the complex representations one associates with 
7';:;~ and L;:~~;;', be equal to a constant times T;:~~ 
and L;;;;:'. The expressions for TikI and Lik1m so 
obtained will be given in Sec. 3. 

In the second-order problem we determine 
Sil(Xl, Xz, 1') in the far field as an integral over 
Srm(XlS, XZS/ 1'8), where the S subscript indicates 
points on the surface of the source. For n = 3 and 
n = 4 no such simple relationship exists. We thus 
discuss the propagation problem in detail in Sec. 4 
to show how the complex formalism may be used. 
To show how the formalism may be simplified in a 
particular case we conclude this paper with a 
disucssion of quasimonochromatic radiation. In 
particular, in Sec. 6 we treat the problem of de­
termining the two-point intensity coherence for 
quasimonochromatic radiation from a modulated 
incoherent source. 

Although this paper is written in the language of 

• P. Roman and E. Wolf, Nuovo Cimento 17, 462 (1960). 

electromagnetic theory, the results are not restricted 
to this discipline. The material in Secs. 2 and 3 
may be applicable to many fields and the radiation 
studies may prove useful in the mathematically 
related field of acoustics. 

2. PROOF THAT 
(Ej(x" t)Ek(XZ, t + 1'2) ... Ep(x.., t + 1'~» = 0 

To determine the appropriate forms of Tiki 
and L ik1m it is necessary to first prove that 
(Ei(X1, t)Ek (X2 , t + 1'z) ••• Ep(x,., t + 1',,» = O. 
To do this we follow a proof given by Roman and 
Wolr for the second order case. 

First note that if E~(x, t) exists for all time Ei(x, t) 
will not exist since the Hilbert transform of E~(x, t) 
will not exist. To avoid this difficulty we consider 
the function 

E;:(x, t, T) = E;:(x, t), 

= 0, 

It I ::; T, 

It I > T. 
(12) 

From E~(x, t, T) we may form the analytic signal 

Ei(x, t, T) = E'i(x, t, T) + iE:(x, t, T), (13) 

where E;(x, t, T) is the Hilbert transform of 
Ei(x, t, T). In subsequent calculations we let T -t 00. 

We define the time average of quantities like 
Ei(x, t, T) by the integral (see Ref. 3) 

. 1 f'" hm 2T _'" ( ) dt. 

Since E;(x, t, T) is an analytic signal we may 
represent it as an integral over positive frequencies 

Ei(x, t, T) = 1'" exp (-27tipt - 27tiP1')iS;(x, P, T) dp. 

(14) 

We now find 

(E;(xl! t)Ek(X2 , t + 1'2) ••• E"(x",, t + 1' .. » 
1 fa> [1'" 1'" - lim- ... 

- T_", 2T -00 0 0 
n-fold 

integral 

X exp [-27ti(Vl + Pa + ... + vJtl 

X exp [-21T'i(V21'2 + ... + V,,7 .. )] 

X E;(Xl' VI, T)Ek (X2 , V2, T) ... 

X Ep(x", V,.. T) dPl dp2 ..• dV,. ] dt. (I 5) 

Assuming we may interchange orders of integra-
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tion, 

(E;(x l • t)Ek (X2 • t + 72) '" E.,(x". t + 7,,» 

= 1" ... [' exp [-2ni(V2T2 + .,. + V"T,,)] 

X 8(vI + V2 + '" + v,,) dVI dV2 '" dv". (16) 

where it may be seen that 

8(vI + V2 + ... + Vft) 

= i: exp [-2ni(vI + v~ + .. , + v,,)t] dt. 

Now since the integrals over VI, V2, ••• , Vn are 
only over positive values and the delta function 
allows a contribution to the integral only when 
one of the Vi is negative the right-hand side of Eq. 
(16) is zero and we have 

(E;(xl • t)Ek(x21 t + 72) ••• Ep(x". t + Tn» = O. (17) 

From Eq. (17) one may show that 

T;;~(xI' X2 • Xa• 72, 73) = T;~;(XI' X2, %a, 72, Ta) 

+ T:~;(xI' X2, X3, T2, Ta) + T:~~(xI' X2. Xa, T2, Ta), 
(18) 

T;~;(xI' x2 , Xa• 72, 73) = T:~;(xI' X2 • X3. T2, 73) 

+ T;!~(Xl' X2• X3 , T2, 7a) + T;;;(xl • X2 , Xa, T2. Ta). 
(19) 

where, for example, 

Also 

L;~~~(xI' X2, x3, X4, T2, Ta, T4) 

= -L:!;~(Xl' X2 • Xa, X4 • T2, T3. T4) 

+ L:~;;;'(xI' X2, X3, X4, T2, Ta, T4) 

+ L;~;~(xI' X2• Xa, X4 , T2. Ta, T4) 

L;!;~(Xl' X2, X3, X4 , T2, 73. T4) 

= +L;~;;;'(xI' X2, Xa• X4 , 72, Ta, 74) 

(20) 

+ L:~~:;'(Xl' X2• X3. X4, T2. T3, T.) 

- L:~;~(xI' X2 • X3• X4, 72, 73. 7.) 

- L;i~~(Xl' X2 • X3• X4 • T2, Ta, T.) 

- L:~;;;'(XI. X2 • X3, X4 • T2, 73, T.), (21) 

where, for example, 

3. FORM OF T;kl(XI, X2, lea, 72, 73) AND 
Liklm(Xl, x~, Xs, X4, 1'"2, 'Ta, 74) 

In the second-order case we have remarked 
that the form (Ej(xl , t + T)Et(x2, t» was the 
only natural complex expression to associate with 
(E;ex, t + T)E~eX2' t». [The expression (E~(XI' t + 7) 
E k eX2 , t» is simply the complex conjugate of 
(Ej(x l , t + 7)E't(x2 , t» and introduces nothing new.] 
For T:;~(XI' X2 , Xa, T2, Ta), however, there are three 
expressions that appear immediately if one wishes 
an associated complex form. They are 

(22) 

= (Ej(xi • t)Ek(X2, t + T2)E~(X3' t + Ta». 

or their complex conjugates. 
For these functions one finds from Eqs. (18) and 

(19) (dropping explicit mention of the arguments 
for simplicity) 

T~kI = 2[T;;; - T;1;1 + i2[T;~; + T;;t1, 

T~kI = 2[T;;; - T:~t1 + i2[T;;; + T;;;l. 

T~kl = 2[T;;~ - T;~D + i2[T;!i + T;~i]. 
(23) 

From Eq. (23) we see that T~kl is an analytic 
signal with respect to the variables 72 or T3, T~kl 
is an analytic signal with respect to the variable 
Ta, and T~kl is an analytic signal with respect to T2' 

That is, each function is an analytic signal with 
respect to those variables for which the complex 
conjugate was not used. 

It is usually desirable that the final result of a 
mathematical calculation be the real quantity T;~~ 
and thus it is important that the complex form Til,z 
associated with Ti;~ readily yields T;~;. As we 
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stated in Sec. 1, we shall use this as a criterion for 
choosing Tiki' In particular, we require that 
Re [Tiki] = constant times T;~;. 

Imposing the above condition, a satisfactory 
form for Tiki is 

(24) 

From Eqs. (18) and (19) we find 

(25) 

Unfortunately, Re Tiki and 1m Tiki are not now 
related by a single Hilbert transform relation. How-

ever, T;~; may be found from T;;; by noting that 

= 1. fTr>T(X 1 , X 2 , X3 , -8,73 - 72 - s) ds 
7t 8 + 72 

= ~ ff TiTT(x1 , X2 , Xa, P2, Pa) dp2 dPa. 
7t (P2 - T2)(Pa - 7a) 

(26) 

The fourth-order case proceeds similarly except 
that now one must consider seven functions 

L~kl",(Xl' X2 , Xa, X4, 72, 7a, 74) = (E,,(Xl, t)Et(x2, t + 72)E~(xa, t + 7a)E",(x4, t + 74», 

L~kltn(Xl' X2, Xa, X4, 72, 7a, 74) = (Ei(XI , t)Et(x2 , t + 72)E1(xa, t + 7a)E!(X4, t + 7.», 

L~klm(Xl' %2, %a, %4, 72, 7a, 74) = (E,,(XI. t)Ek (%2, t + 72)E~(xa, t + 7a)E!(x4, t + 74», 

L:kl",(%l, X2 , %a. %4, 72, 7a. 74) = (E~(%l' t)Ek(X2, t + 72)E1(xa, t + 7a)E",(X4' t + 74», 

L~klm(Xl' %2, %a, %4, 72, 7a, 74) = (E,.(x1 • t)E1(x2, t + 72)E1(xa, t + 7a)E ... (x4, t + 74». 

L~klm(%l' X2, %a, %4.72, 7a, 74) = (Ei(X1 , t)Ek(X 2 , t + 72)E~(xa, t + 7a)E",(X4, t + 74», 

L~klm(%l' X2, %a, X4, 72, 7a, 74) = (Ej(x1 , t)Ek (%2. t + 72)E1(xa, t + 7a)E!(x4, t + 74»' (27) 

Using Eqs. (20) and (21) one can then find the 
following relations 

L~kl'" = 2[L;;;~ + L;;;~ + L;~;;;' + L;;;;;'] 

+ i2( - L;;;;;' - L;~;:;' + L;i;~ + L:~;~l, 
2 [LTdi LTiiT + LiiTT + LiTTi] L jk1m = 2 jklm + jklm jklm jklm 

+ i2[ -L~;;~ - L;!;:;' + L;~;:;' + L:~;~], 
La 2[LTiri + LTiiT + LidT + LiTri 1 jklm = jklm iklm ikl'" iklm 

From Eq. (28) we see that L~kl" is an analytic 
signal with respect to 74; L~kl" is an analytic signal 
with respect to 7a; L~kl'" is an analytic signal with 
respect to 72; L~kl'" is an analytic signal with re­
spect to T2, 7a. or 74; L~klm is an analytic signal with 
respect to 7a or 74; L~klm is an analytic signal with 
respect to 72 or 74; and L;klm is an analytic signal 
with respect to 72 or 7a. 

The function L ik1m whose real part is propor­
tional to L;;/:' is 

7 

L jk1m = L L~kl .... (29) 
p-I 

+ i2[ -L~~;~ - L;~;;;' + L;~;;;' + L:~;~], 
L:k1m = 2[L;~;;;' - L;~;~ - L;~;~ - L;!;:;'j 

+ i2[ - L;~;~ + L;~;:;' + L;~;:;' + L;~;~l, (28) where from Eqs. (20) and (21) we find 

. [LiiiT LiTTT + LTiTT + LTdr 1 + t2 - iklm + iklm iklm iklm . 

(30) 

There is no simple relation between Re L jk1m 
and 1m L jk1m although 1m L jklm may be obtained 
from Re L jk1m by noting that all the imaginary 
terms are simply Hilbert transforms of L,.r;;:.. The 
relationship between L/;/:' and L.':t:. (which will 
be needed later) is 
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4. SOLUTION OF A RADIATION PROBLEM USING 
THIRD- AND FOURTH-ORDER MOMENTS 

Let us~ suppose the statistical properties of the 
radiation field are specified over a finite enclosed 
surface, S, and we seek the statistical properties 
of the field external to S. For simplicity we con­
sider the scalar problem (say the forward radiation 
from a plane finite surface) and replace E~ (x, t) 
by vr(x, t) where vr(x, t) satisfies the wave equation 

\7zvr( t) = 1. a
2

V
r
ex, t) . (31) 

X, 02 at2 

We now associate with vr(x, t) the truncated 
function V r (x, t, T) and with vr (x, t, T) the analytic 
signal Vex, t, T) which satisfies the equation1 

,,2V( t T) = 1. a2

V(x, t, T). 
v x,, c2 at2 (32) 

In terms of a Green's function, Vex, t, T) has the 
formal solution 

Vex, t, T) = -1'" e-21ri"[f aG(x, x', v) I 
o sans Ix'-xs 

X {i'" e21ri
." V(Xs, t' , T) dt'} dS ] dv (33) 

where G(x, x', v) satisfies the equation 

\72G(x, x', v) + k2G(x, x', II) = - 8(x - x') (34) 

(k = 211"1I/C), the boundary condition G(x, x 8 , II) = 0, 
and the Sommerfeld radiation condition. Xs indi­
cate points on the surface S. 

A. Review of Second-Order Moment Calculations 

The second-order mutual coherence function, 
r(Xl' X2 , r) is defined as 

r(Xl, X2, r) 

= ~..?! 2~ L: V(x 1 , t + r, T)V*(xz, t, T) dt (35) 

and formal manipulation (assuming we may inter­
change the limit and orders of integration) yields 

r(Xl, X2, r) = i'" e-
2r'''{is is K(Xl' x2, XIS, X28, II) 

X [L: r(X18 , X2 8, r')eZ1riH
' dr' ] dSI dSz} dll, (36) 

where 

6 We use the terms "moments" and "coherence functions" 
interchangeably in this paper. 

The function f(X 18, X28, v), defined as 

(37) 

is the mutual power spectrum. 
We note I' (XI' x2 , r) = 2r"'(x1, x2, r) + 

i2r" r (Xl, x2, r) where riT(Xl' Xz, r) is the Hilbert 
transform of r"'(Xl' x2 , r) with respect to r. 
rrr(X18' X2 8, r) is assumed known and r(x1s, x2s, r) 
is determined by adding to 2r"(XI8, x 2 s, r), 2i 
times its Hilbert transform with respect to r. 

To calculate r(x1 , x2, r), however, one need not 
calculate the Hilbert transform of rrr(XI8, X2 s, r), 
for only a knowledge of t(x1s, X28, )/) is required. 
Now 

(38) 

The second term on the right-hand side of Eq. (38) 
may be written 

i L: r ir(X I 8, X2 8, r')e2
"iYr' dr' 

'j'" 1 [1'" rrr(x1s, X~S, p) dP] e2"irr' dr', (39) 
= 2 _"';: L", P - r 

using the definition of the Hilbert transform. 
Assuming we may interchange orders of integra­

tion, this yields 

• ir ,2riYT', 1'" 
't _'" I' (XIS, X28, r )e dr 

since 
1 f'" 2"i,,' ed' . 2 ..... " - -,--7=te . 
11" _'" 7 - P 

Thus 

rA(X X ) 41'" rTT( ') 2rirT' d I 
IS, 2S,1I = _'" XIS, X 2S, r e r. 

(41) 

Equation (36) is particularly useful for consider­
ing quasimonochromatic radiation (see Sec. 5 for 
definition of quasimonochromatic radiation) since 
the final integral is only over positive frequencies. 

B. Third-Order Moment Calculations 

Using Eq. (33) one may calculate Tl(Xl' x2, X3 , 

T 2, r3) in terms of T\x,S ' X 2 8, X 3S , 72S, T3S)' We 
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find 

Tl(Xl • X,. xa • T2. Ta) "'" 1~ 1~ exp (-2wij/2 T2 - 2wij/a Ta){i i i K!(xl • X2• Xa• X18. X28. X38. "2 + IIa. "2. IIa) 

X (L~ L: Tl(X1S. X2 S. Xa8. TL TD exp (2will2T~ + 2willaTD dT~ dT~) dSl dS2 dSa} dll2 dlla• (42) 

where (44) 

(In subsequent sections the hook notation will 
indicate Fourier transforms with respect to the II 

variables.) 
Unfortunately, we cannot here find a relation 

of the form 

Similar equations may be derived for TZ and T S T(xl • X2 • Xa• T2. Ts) 

with functions K~ and Ki defined as above (see O( , ') = Xl. X2 • Xa• T2. Ta. X18. X2 8. Xa8. T2. Ta 
Appendix 1 for definitions of K: and KD. 

T is found from the equation X T(xls. X28. XS8. Tt TD (45) 

T(x1 • X,. Xa. T2. Ta) = l~ l~ exp ( - 2wiPZT2 - 27riPaTa) 

X i Is Is K!(Xl.X2.Xa.Xls.X28.XSS.II2 + IIa. 112. IIa) 

X t\X18. X2S. XaS. "2. IIa) dSl dS2 dSa dll2 dlla 

+ 1~ 1~ exp (2will2T2 - 2willa Ta) 

X Is Is Is K:(Xl.X2.Xa.Xls.X28.Xa8.112 + IIa. J/2. IIa) 

X t
2
(X18. X28. XaS. -j/2. IIa) dSl dS2 dSa dll2 dj/a 

+ l~ l~ exp (- 27r'ill2T2 + 27rilla Ta) 

X t3(XlS.X28.Xas.II2. -j/a) dSl dS2 dSa dll2 alia. (43) 

where, for example, 

where 0 is some linear integral operator. 
Referring to Eq. (23) we see that all the terms 

comprising T\ T2, and T3 may be found from T rrr 

by taking Hilbert transforms. However, since we 
only need t(X18, X28, Xa8, "2, IIa) the calculation 
simplifies as in the second-order case. (From here 
on the functional notation of position vectors will 
be dropped whenever possible.) Calculation shows 

(46) 

t2( -112. IIa) = 4trrr( -112, IIa) + i4t;rr( -112. lis), (47) 

t
a
(II2. -lis) = 4trrr(II2' -lis) + i4tirr Cll2. -IIa). (48) 

tm (112, IIa) and tirr (112, IIa) are not simply related. 
However, T irr may be found from T rrr by utilizing 
the following Hilbert transform 

C. Fourth-Order Moment Calculations 

Proceeding as in the third-order case 

X {i iii K~(Xl' Xz• Xa• X4• X18. X28. Xa8 • X4S. "2 + 113 - "4. "2. "3. 114) 

X L\X18. XZS. Xa8. X4S. -112. -lla. 114) aSl dS2 dSa dS4} allz dlla dll4• (50) 
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where 

= [aGeXl' Xr, 1'2 + I'a - 1'.) I ] 
ansI. XS.'-XIS Similar equations may be derived for L P (p = 2, 

3, 4, 5, 6, 7) in which the K: are defined similarly 
to K~. See Appendix 1 for definitions of K:. 

Then L becomes 

L(T~, Ta, T,) = i~ l~ i'" exp [21Ti(V2T2 + I'a T3 - I'.T.)) 

X [Is i Is i K!(I'2 + I'a - 1',,1'., I'a, I',)Ve-I'2' -I'a, 1'.) dS! dS2 dSa dS,] dl'2 dl'a dl'. 

+ 1~ 1~ 1~ exp [21Tiel'2T2 - I'a T3 + I',T.)] 

X [Is i i Is K!el'2 - 1'3 + 1',,1'2, I'a, I'4)1}( -1'2, I'a, -1'.) dS! dSz dSa dS4J dl', dl'a dll4 

+ i~ i~ i'" exp [21Ti( -I'ZT2 + VaTa + V4 T.») 

X [Is Is Is Is K!e -v, + I'a + V4, V2, I'a, I'4)La(V2, -V3, -v.) dS! dS2 dS3 dS.] dV2 dll3 dll, 

+ 1~ 1'" 1'" exp [21Ti( -V2T2 - V3 Ta - I'4T4)) 

X [Is is is is K!( -1'2 - va - V4, 1'2, I'a, I',)V(V2' va, 1'.) dS! dS2 dSa dS,] dl'2 dV3 dll, 

+ i~ {' fo'" exp [21Ti(+1I2 T• - I'aTa - I'.T,») 

X [Is Is is is K!(I'2 - Va - V4, 1'2, Va, v.)L5( -112, lIa, v.) dS! dS2 dSa dS.] dV2 dl'a dv. 

+ i'" i~ l'" exp [2'1!i( -I'2T~ + V3 Ta - V,T4») 

X [is is i i K:( -V2 + Va - 1'4, I'a, Va, v.)I}(va, -Va, II,) dS! dS2 dSa dS.] dl'2 dlla dll4 

+ i'" L" l'" exp [21Ti( -VaTa - VaTa + 114T,)) 

X [Is Is is Is K~( -I'a - lIa + v" 1'2, 1'3, 1'.)1/(1'2' Va, -II.) dS1 dS2 dSa dS.] dV2 dVa dl'.. (51) 

In . analogy to the second- and third-order cases 
there is a relation between Lp and Lrrrr and Lim. 
The relations are 

(52) 

L2( -Va, Va, -v.) = 8Lrrrr( -V2. "3. -1'.) 

+ 8iL,rrr(-1I2.V3. -II.), 

L3(I' •• -V3. -V.) = 8Lrrrrev2. -V3, -V.) 

+ 8iL,m(v2' -Va, -V4) , 

L\1I2. Va, v.) = 16Lrrrr(v., Va. v,), 

(53) 

(54) 

(55) 
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+ 8iLirrr( -1'2, I'a, 1'4), 

L\1'2' -I'a, 1'4) = 8Lrrrr(1'2' -1'3,1'4) 

+ 8iLirrr(1'2' -I'a, 1'4), 

L7(1'2' I'a, -1'4) = 8L"rr(1'2' I'a, -1'4) 

+ 8iLir"(1'2, I'a, -1'4). 

(56) 

(57) 

(58) 

The relationship between L rrrr (T2' Ta, T4) and 
L orrr (T2' T3, T4) is 

= .! f Lrrrr(_p, Ta - T2 - p, T4 - T2 - p) dP. 
7r P + T2 

(59) 

5. QUASIMONOCHROMATIC APPROXIMATION 

In the quasimonochromatic approximation we 
assume that the spectral width of the radiation, 
~I', is very small compared to a mean radiation 
frequency ii (i.e., ~V/ii « 1). For the approximation 
to be useful, however, we introduce the second 
assumptiqu that radiation path differences ~l and 
delay times CT are much less than c/ ~I'. As a rough 
guide we may take path length in the geometric 
optics sense, but for a more thorough discussion 
of this assumption we refer the reader to Beran 
and Parrent. I 

In the quasimonochromatic approximation we 
find that L m 

~ 0, m = 4, 5, 6, 7. In the quasi­
monochromatic approximation it is convenient to 
write V(XI, t) as 

V(x l , t) = A(XI' t) exp [-iwt - ic/>(x l , t)] 

The factor e-2iiOll in the L4 expression yields L4« LI 
since A(x, t) and c/>(x, t) are slowly varying func­
tions of time. Similarly L 5

, L 6
, and L7 may be 

neglected compared to L\ L2, and L3. Thus Eq. 
(51) contains only three terms. 

= (A (Xl , t)A(X2' t)A(xa, t)A(X4' t) 

X {cos [wi + c/>(XI, t)] II cos [wi + c/>(x2, t) + WT2Jl 

X {cos [wt + c/>(xa, t) + WTa] I 
(63) 

In time intervals of the order l/w, A (x, t), and 
c/>(x, t) are approximately constant, and direct 
calculation shows 

(64) 

where now 

X [COS(c/>l - c/>2 + c/>a - c/>4 + W(-T2 + Ta - T4» 

+ COS(c/>l - c/>2 - c/>a + c/>4 + W(-T2 - Ta + T4» 

+ cos (c/>l + c/>2 - c/>a - c/>4 + W(T2 - Ta - T4»]) , 

[Ai == A(x;, i), c/>; == c/>(x;, i)] 

and we remember that the A's and c/>'s are functions 
of time. 

Taking the Fourier transform of L irrr (XI, x2, Xa, X4, 
T2, Ta, T4) with respect to T2, Ta, and T4 it then follows 
that 

(65) 

(w = 27rii) , (60) and thus for a quasimonochromatic approximation 

where A (Xl, t) and c/>(XI, t) are slowly varying func­
tions of time, compared to e- i

;;;'. LI(XI' X2, Xa, X4, 
T2, Ta, T4) is then for example 

= exp [iW(T2 + Ta - T4)](A(XI' t)A(X2' t)A(xa, t) 

X A(X4' i) exp {i[-c/>(XI, i) + c/>(x2, i) 

+ c/>(xa, i) - c/>(x4, i)]}), (61) 

while 

X (e- 2i ;;;'A(xl , i)A(X2' i)A(xa, i)A(X4' t) 

X exp {i[ +¢(xl , t) - ¢(X2' i) - c/>(xa, i) - c/>(x4, i)]J). 
(62) 

L\ -1'2, -1'3, 1'4) ~ 16L""( -1'2, -I'a, 1'4), 

L2( -1'2, Va, -1'4) ~ 16L""( -1'2, I'a, -1'4), 

Finally note that 

(66) 

(67) 

(68) 

(69) 

(70) 

~ (AlsA2sAas A 4S exp [i( -c/>lS + c/>2S - c/>as + c/>4S)J) 

X 0(1'2 - ii) O(l'a - ii) 0(1'4 - ii), (71) 
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~ (A18A2SAasA.s exp [i( -tPIS - tP28 + tPas + tP.s»)) 

X ~(1I2 - ii) ~(lIa - ii) ~(1I4 - ii), (72) 

80 that 

L(O, 0, 0) ~ iii i K!(ii, ii, ii, ii) 

X (VIS v:s Vls v.s) dSI dS2 dSa dS. 

X (VIS V:s Vas Vts) dS, dS2 dSa dS. 

+ iii Is K!(ii, ii, ii, ii) 

By the two-point intensity coherence function 
we may mean either 

Lrrrr(xI, Xl, Xa, Xa , 0, 0,·0) == Rrr(xl , Xa , 0) 

or L\xl , Xl, Xa, Xa , 0, 0, 0) == R\xl , Xa , 0). 

The first function assumes that prior to time 
averaging, (V~)2 measurements may be made in 
times of the order of l/ii; the second form assumes 
(V~)2 is averaged over several cycles of the mean 
wavelength before detection and subsequent time 
averaging. For our discussion we shall assume some 
local averaging occurs prior to detection and thus 
shall calculate R\xl , xa, 0) = «VI V~)(Va V~». 

RI(XI' xa, 0) is given by the equation [we now 
need only the first term in Eq. (73)1 

X (VIS v2S Vls Vts) dSI dS2 dSa dS., 

where 
(73) R'(XI' Xa, 0) = Is Is Is Is K!(ii, ii, ii, ii) 

ViS = V(X;s, t) = A(x;s, t) exp [-i¢(x;s, t»), 

and we have set 7"2 = 7"a = 7"4 = 0 since in the 
quasimonochromatic approximation the 7" term 
contributes only an oscillatory factor of no im­
portance. 

It is important to realize that the above forms 
of tt, L2, and La may be introduced into Eq. (51) 
only if the assumption of small path differences 
and small time delays is valid. 

6. QUASIMONOCHROMATIC RADIATION FROM 
A MODULATED INCOHERENT SOURCE 

In this section we consider the problem of de­
determining the two-point intensity coherence 
function for quasimonochromatic radiation from 
a modulated incoherent source. This problem was 
treated by Beran and Parrent 6 in a verbal presenta­
tion and we present a similar development here 
as an illustration of the formalism we have de­
veloped. The point of the verbal presentation was 
to show that it was possible in principle to detect 
large scale turbulent fluctuations occurring in non­
resolvable objects. 

X (VIS V:s Vls V. s) dSI dS2 dSa dS4 • (74) 

We wish to calculate RI(XI' xa, 0) for quasi­
monochromatic radiation from a modulated in­
coherent source. We first consider the calculation 
for an unmodulated incoherent source. For an 
incoherent source we will assume here that the 
statistics are Gaussian, that the phase and amplitude 
at a point at uncorrelated, and that the phase has 
equal probability of being anywhere between 0 and 
211". (An incoherent source has never been properly 
defined and so these assumptions may in a sense 
be taken to be part of our definition of an incoherent 
source. Note, however, that we here consider only 
quasimonochromatic radiation from an incoherent 
source since otherwise the concepts of phase and 
amplitude would be meaningless. Basically we have 
in mind radiation similar to filtered starlight.) 
Thus, 

(VIS V:s V:s' V4S) = (VIS V:S)(V:S V4S) 

+ (VIS V:S)(V:S V 4S). (75) 

Equation (A4) gives the form of K! and thus 
we have finally 

RI(XI' Xa • 0) = [Is Is H(x l • X'S. ii)H*(x l • X2S. ii)(VIS V:s) dS, dS2] 

X [Is Is H*(xa• X3S. ii)H(xa• X4 S. ii)(Vls V4S) dSa dS4 ] 

+ [Is Is H(x l • XIS, ii)H*(xa• XaS. ii)(V,s Vls) dSI dSs] 

X [Is Is H*(x,. X2 S. ii)H(xa• X4 S. ii)(V:s V4S ) dS2 dS.]' 

6 M. Beran and G. B. Parrent, Jr., J. Opt. Soc. Am. 52.98 (1961). 

(76) 
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RI(xl' x8 , 0) = i'(Xl' XI, ii)t(Xa, x3 , ii) 

+ teXt, X3, ii)t*(X1, X3, ii), (77) 

RI(xI' X3, 0) = l(x), ii)l(xa, Ji) + It(x!, Xa, ii)12. (78) 

Here 

t(XI. Xa• ii) 

i i H(xi • XIII! ii)H*(xa. XaS, ii)(V18 V:s) dB) dBa 

l(x1I ii) = t(XI' X17 ii). 

Since we are dealing with an incoherent source 
the expression for t(x l , Xa, ji) could be simplified. 
Beran and Parrent7 have shown that for radiation 
in the far field, when a scalar theory is applicable 
(V)s V:s ) may be replaced by I3(Vu Vrs) ~(Sl - Sa), 
where fJ is a constant that depends upon the fre­
quency and details of the source. Then 

vals of length 'TB, where 1/ Av « Ta « T'1'. ( ),. now 
indicates a time average over a time 'TIf in the nth 
interval. It is assumed that in each interval the 
intensity at points on S are essentially constant, 
but that the intensity may change from interval 
to interval. To find the average cltects of the 
intensity fluctuations we simply average over the 
ensemble of time intervals. We denote this averag­
ing by boldface square brackets, [Jav, In other words 
we now compute 

[R!(x i • X3. O)) .. v 

= is is L L K!(ii. ii, v)1 [[(VIS V:s) .. (V:'s V4S ) .. ]].v 

+ [[(Vu V:,s) .. (Vts V4S ) .. ])av) dSI dS2 dSa dS4 • (83) 

For an incoherent source we have 

(V,s Vrs) .. = fJ1is~(xis)J(Si - B;). (84) 

Therefore, Eq. (84) yields t(X1• X3• ii) = i H(x:. XIS. ii)H*(xa, Xu. ii) 

X I3(V18 V:'s) dSI • (79) (R!(xl! X3. 0» 

Lastly, assuming the intensity is constant over 
the source surface, we have 

t(x]. %3. ii) = a L H(x] , XIS, ii)H*(xa, X)S, ii) dB,. 

where a is a constant. This yields 

RI(xl. X3. 0) == l(xl. ji)l(xa• ii) 

+ azlL H(x). XIS. ji)H*(xa• XIS. ii) dSlr 

(SO) 

(81) 

By a modulated . incoherent source we mean 
here a source that undergoes intensity variations 
with period 'TT « 1/ Av. This is the effect turbulent 
fluctuations would have on the radiation passing 
through a surface immediately surrounding an 
incoherent source. To distinguish the slow intensity 
fluctuations from the rapid fluctuations of order 
1/ Av we introduce the concept on an ensemble of 
time intervals. We assume that (VIS Vts V:s V. s) 
has the form 

(VIS V:s V:s V's) = (V)S V:s},,(V:s V4S ) .. 

+ (VIS V!s),,(V:s V. s ).. (82) 

in each of a series of n = 1, 2, ... , N time inter-

7 M. Beran and G. B. Parrent, Jr., Nuovo Cimento 27, 
1049 (1963). 

= (32 Is L IH(xl • X) S. iiW IH(xa. XaS, ii) 12 

X [1l.3"(x1s)13s,,(x3S)] .. ,, dS} dSa 

X H(xa. X2S , ii)[11s,,(xls)12s,,(x2s)].T dS I dS2 • (85) 

If we now write 

then 

+ 132 i L IH(xl • XIS. jiW IH(xa. Xas. jiW 

X [1:s,,(x18)I~s,,(x3S)]." dS! dBa 

X H(xa. X2 S. ji)[I:s,,(xls)I~Sn(X2s»)av dS} dS2 • (86) 

where R~(x}, %a, 0) is the solution in the absence of 
modulation. 

To proceed further we suppose the source surface 
is plane and that 

[I:Sn(xis)I~s"(xks)]",,, = u(lx/s - xksl). 
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For a plane surface H(x;, XkS, ii) is (see Beran and 
Parrentl

) 

H( ~ -2(1 - ikr;kS) Z; ('ler) 
X;, Xk8, ii, = ..1_ -()3 exp '/, ;kS, 

"j:1O r;kS 

(87) 

where 

In the forward region of the far field of the 
source this expression simplifies to 

ik [ik ( ) ] ikR H(x;, Xu, ii) = 27rR exp - R XkSX; + YkSY; e , 

(88) 

where R is the distance from some point on the 
source surface to the observation point. Substitut­
ing Eq. (88) into Eq. (86) yields 

Changing to the coordinates Xl2 = XIS - X2 S, x:s = XIS, we have 

~ 

+ is (JJ er(r12) exp [ -~ [(XI - Xa)XI2 + (YI - Ya)YI2] ] dX12 dYl2) dS~} (90) 

assuming u(rn) ~ 0 in distances small compared to a characteristic dimension of the source area. 
This yields 

[R!(xi • Xa, O)]av = R~(xI' Xa, 0) 

+ 1~~~4 A[ 27r[(/')2].vl2 + 27r i~ cr(r12)T12Jo((XI - Xa)2 + (YI - Ya)2)! ~ Tn ) JaT12 • (91) 

where [([')Z] •• l2 = f~ rI2cr(r12) drl2. 
When Xl = Xa we find 

27r[(1')2] ... l2 A{lk4 
I I 

167r4R4 = [Rn(xl> XI, 0)] ... - RO(XI' Xl, 0), 

(92) 

thus [([')2Javl2 is measurable if we measure 
[R!(x l , XI, 0)) ... and r(xl , Xl, 0) [Note that r(XI' Xl, 0) 
is insensitive to the modulation.] and calculate 
R~(XI' XI, 0) from r(XI' Xl, 0). The function 

1&4R4 I 

P(xl • Xa • 0) = 27r{ik4A [[Rn(xi • Xa, 0)] ... 

- R~(XI' Xa, 0)] - l2[(l'Y]... (93) 

may similarly be determined by measurement and 
calculation. We have then (setting XI = YI = 0 
for convenience) 

i'" er(rI2)rI2 drl2Jo(d ~ r 12) = P(d, 0), (94) 

where d = (x~ + Y:)!. P(d, 0) is the Bessel trans­
form of er(r12) and the integral may be inverted to 
yield er( r 12) • 

At the origin the ratio of R~(XI' Xl, 0) to 

1~~~4 A27r[(/,)2] ... l2 

is ~ D2 [2/Z2[(I')'.v, where D is a characteristic 
source dimension. Interpreting [(/')2] ... as the mean 
square fluctuation in intensity, l is a macroscale 
of the modulation. The characteristic spread of 
Rl(XI' xa, 0) is R/kD, and the characteristic spread 
of the integral in Eq. (92) is R/kl. 

To detect the modulation is extremely difficult 
unless l is a significant fraction of D and the in­
tensity fluctuations are appreciable. The fact that 
R/kD « R/kl is an aid in detection however, since 
the modulation effect becomes a much more signifi­
cant fraction of the unmodulated effect when 
IXI - Xa! » R/kD. 
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APPENDIX I 

where 

H( ) _ aG(xl' , x~, v) I 
X"' Xl'S, V - iJn . 

81' xp'-xl's 

K~(XI' X2, Xa , XIS, X2S, XaS , V2 - va. V2. V3) = H(xl. XIS. V2 - v3)H*(x2• X2S. 112)H(xa. XaS. 113). (A2) 

K!(xl • X2. Xa • XIS. X2S. XaS • lIa - 112.112. lIa) = H(xl • XIS. lIa - 112)H(x2• X2S. 112)H*(xa• XaS. lIa). (A3) 

(AlO) 
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Low-temperature ~xpansions for the free energy of the Ising model of a ferromagnet and an anti­
ferroma~et are derlv~d for. the more usual two- and three-dimensional lattices. The underlying 
enumeratIve problem IS studIed and a new method described that makes it possible to obtain more 
terms than available previously without undue labor. 

1. INTRODUCTION 

THE theory of cooperative phenomena in 
crystals has received much attention in recent 

years and considerable effort has been given to the 
elucidation of the properties of the three-dimensional 
Ising model. For a general introduction and a lead 
into the literature reference should be made to the 
review by Domb1 and more recently by Fisher.2 

One of the most successful methods so far em­
ployed in investigations of the physical properties 
of the Ising model, be it for a ferromagnet, anti­
ferromagnet, binary alloy, or lattice gas, is a study 
of exact series expansions. By a study of these 
the problem of the critical behavior of the spon­
taneous magnetization, specific heat, and suscepti­
bility, for the three-dimensional model has been 
largely resolved.3

-
5 Extrapolation procedures have 

been much improved recently5 and it is becoming 
clear that the method can yield useful information if 
expansions of adequate length are available. 

It is the purpose of this paper to investigate the 
enumerative problem that arises in the derivation 
of what are usually described as "low-temperature" 
expansions. We shall describe a new method and 
use it to derive data sufficient for most applica­
tions for the more usual two- and three-dimensional 
lattices. In most cases our results represent a useful 
advance on the data available hitherto. The new 
method exploits the well-known sublattice divi-

1 C. Dom'!, Advan, Phys. 9, Nos. 34 and 35 (1960). 
2 M. E. FIsher, J. Math. Phys. 4,278 (1963). 
3 C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1963). 
4 G. A. Baker, Phys. Rev. 129,99 (1963). 
& G. A. Baker, Phys. Rev. 124,768 (1961). 

sion of loose-packed lattices and is especially effec­
tive for the derivation of expansions for the anti­
ferrimagnetic problem. It has a further advantage, 
of great practical value, of being to a large extent 
self-checking. It is, therefore, possible to under­
take with confidence complex enumerations that 
would be otherwise difficult to verify. 

The data have already been applied in part to 
the ferromagnetic problem, 6 

, 7 antiferromagnetic 
problem,8-10 and the binary alloy problem. l1 The 
retention of the sublattice division allows one to 
study the Ising antiferromagnet in a magnetic 
field while retaining a parameter (the staggered 
field susceptibility) which should have a strong 
singularity at the critical temperature. 

The method described can be modified for a study 
of more complex systems such as, for example, 
ferrimagnetism or the nonstoichiometric alloy prob­
lem with nearest-neighbor interactions, which, if 
we neglect the change of thermal vibrations with 
ordering, is formally equivalent to the Ising model 
in a temperature-dependent magnetic field. We 
give in the text an account of some applications 
and an assessment of the data derived. 

2. THE LOW-TEMPERATURE ENUMERATIVE 
PROBLEM FOR A FERROMAGNET 

The low-temperature enumerative problem arises 
quite naturally in the derivation of low-temperature 

6 J. W. Essam and M. E. Fisher, J. Chern. Phys 38 802 
(1963). . , 

7 M. E. Fisher (to be published). 
8 M. F. Sykes and M. E. Fisher, Physica 28, 919 (1962). 
9 M. E, FIsher and M. F. Sykes, Physica 28, 939 (1962). 
10 J. W. Essam and M. F. Sykes, Physica 29 378 (1963). 
11 A. Bienenstock (to be published). ' 
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expansions for the free energy of the Ising model. 
At absolute zero all the spins point one way and 
give rise to a spontaneous magnetization, and for 
temperatures slightly above zero thermal fluctua­
tions will perturb this ordered state. The probability 
of any particular perturbation will be given by the 
appropriate Boltzmann factor and, in general, the 
overturning of a spin causes an increase in energy. 
The most important perturbations at the lowest 
temperatures will thus correspond to relatively 
few overturned spins. The possible perturbations 
are conveniently grouped by the number of over­
turned spins and the energy of any particular per­
turbation depends on the relative positions of these 
overturned spins. If, following the usual conven­
tion, we denote by 2J the energy gained if two 
first-neighbor spins change from parallel to anti­
parallel position, and denote by m the magnetic 
moment per spin, it is readily shown that the over­
turning of s spins with r first-neighbor bonds be­
tween them results in an energy gain of 

2(qs - 2r)J + 2msH, (2.1) 

where H denotes any applied magnetic field and q 
is the coordination number. Denoting 

exp (-4J /kT) by u = Z2 and exp (-2mH/kT) by 1-', 

(2.2) 

the Boltzmann factor corresponding to (2.1) will be 

exp {[ -2(qs - 2r)J - 2msH]/kT} = u!Q·-r IJ." (2.3) 

and the energy of the ground state is 

-N(!qJ + mH). (2.4) 

At low temperatures both u and IJ. are small and 
the partition function and free energy can be ex­
panded as a double series in powers of u and 1-'. 

Following the notation of Domb we shall write 
the free energy per spin (F) as 

F = -!qJ - mH - kT In A(IJ., u). (2.5) 

To derive the series development for In A we must 
study perturbations of the ordered state. 

In general, the number of perturbations of a 
given type on an infinite lattice of N sites will be 
some polynomial in N and it can be shown that 
the contribution to the configurational free energy 
per spin corresponds to taking the coefficient of the 
first power of N. Denoting this linear part of the 
total number of ways of choosing s spins with r 
bonds between them by [s; r] then 

In A. = 2: [s; rJui •• - r 
p.'. (2.6) 

all 8:.r 

We shall group the expansion (2.6) as a develop­
ment in powers. of I-' and the successive coefficients 
will then be finite polynomials in u, L.(u) defined by 

In A = 2: L.(u)I-". (2.7) 
• 

To specify a polynomial L. we require the con­
tributions from perturbations with s overturned 
spins. 

t·(·-ll 
L.(u) = 2: [Sir]u1q.-r

• (2.8) 
r~O 

The most complete description of the various 
perturbations that make up any given [s; rJ is 
provided by grouping them according to the topology 
of their nearest-neighbor linkages. We may call 
this the method of topological breakdown. As an 
example on the face-centered cubic lattice the per­
turbations corresponding to [4; 3] are, in a self­
explanatory notation, 

(1) N (282N) 

1 
Total 

(2) (44N) contribution to (2.9) 
[4; 3] = 126. 

(3) L· (8N2 
- 200N) 

Methods for counting such low-temperature con­
figurations, as these are called, have been much 
studied by Domb1 and his co-workers. For all but 
the smallest values of 8 it is convenient to count the 
terms in a contracted notation. For example, in 
[5; 5] we require the values of perturbations corre­
sponding to the configurations 

c--- l(, If. (2.10) 

and we shall denote the total contribution of these by 

(2.11) 

With this convention we illustrate in Fig. 1 the 
topological breakdown of [8; 9] on the body-centered 
cubic lattice. It is evident that descriptions of this 
kind are laborious to derive. We shall obtain the 
result [8; 9] = 41352 on the body-centered cubic 
more directly in Sec. 4. 

We give in Appendix I a table of the perturba­
tions of up to 5 spins for the triangular and face­
centered cubic lattices. To derive a useful number of 
terms it is usual to exploit the fact that the 
!s(s-1)+ 1 quantities [Sj 0], [8; 1], ... , [s; !sCs-I)] 
are not aU independent and it is possible to derive 
8 linear relations between them. These constraints 
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FIG. 1. Body-centered cubic-synoptic topological breakdown for [8; 9]. 

Total Number of Configurations described = 812N2 + 41352N Coefficient of U 23 in Ls(u) = 41352 

L ~ 30024N t!J -
L[!0 33204N IS / 

to 168N ~-
L~ ~ -6984N 

w--D 1716N 0>-

have been described by Domb12 and applied to the 
simple quadratic lattice. A further application was 
made by Wakefieldl3 to the simple cubic lattice. 
A proof of these constraints for the simple cubic 
lattice which holds without modification for any 
loose-packed lattice has been given by Wakefield 
and the result for close-packed lattices has been 
proved by Sykes. 14 The generalization of these 
constraints to the second-neighbor problem has 
been given by Domb and Pottsl5 and to the Ising 
problem with general spin by Sykes. a 

The constraints are best exploited by counting 
only perturbations with r ~ 8, which correspond 
to configurations most easily counted as relatively 
few of them are separated. The counting of the 
more difficult separated configurations is thus 
~voided. The number of constraints can be in­
creased to (8 + 1) by employing the high-tempera­
ture specific-heat expansion (DombI2

) for zero field 
and to (8 + 2) by employing the high-temperature 
susceptibility expansion (Sykesu .16

). On a close­
packed lattice the method would seem the most 
effective so far given for deriving the successive 
L.(u). We give in Appendix rII, the first six L(u) 
for the face-centered cubic and the first eight L(u) 
for the triangular lattice which we have derived in 
this way. 

12 C. Domb, Proc. Roy. Soc. (London) A199, 199 (1949). 
13 A. J. Wakefield, Proc. Cambridge Phil. Soc. 47, 799 

(1951 ). 
14 M. F. Sykes, thesis, Oxford (1956) (unpublished). 
15 C. Domb and R. B. Potts, Proc. Roy. Soc. (London) 

A219, 125 (1951). 
16 M. F. Sykes, J. Math. Phys. 2, 52 (1961). 

8N2-312N ~ • 24N'-864N 

96N"-4416N ~ - 24N2-816N 

288N2-10464N ~ / 12N2-528N 

192N2-7104N 

168N2-6240N 

The amount of work involved in deriving the 
successive L(u) increases rapidly with 8. It can be 
shown by a more detailed analysis of the method 
of topological breakdown that to calculate L,(u) it 
is sufficient to know the number of multiply-con­
nected17 perturbations with 8 spins on the lattice 
considered. This result can be obtained more di­
rectly in another way by using the U rsell-Mayer 
formalism and this approach can be developed as 
an alternative method for obtaining the L(u). We 
shall not describe the method since this has been 
adequately done by Rushbrooke and Scoins18

•
111 

and Domb and Hiley.'o Although of great theo­
retical interest, the Mayer method has not so far 
led to any easy method of calculating the contribu­
tions from the more complex perturbations. A table 
of the multiply-connected perturbations with up 
to eight spins (on a loose-packed lattice) is given 
by Rushbrooke and Scoinsl9 and is relatively diffi­
cult to provide. We give in Sec. 4, a method which 
exploits the fact that what is actually required is 
the numerical value of each [r; 8] and that a topo­
logical description, complete or partial, is not 
necessary. 

17 A multiply-connected configuration is a connected con­
figuration without articulation points. An articulation point 
is a point which, if omitted, would cause the configuration to 
fall into two disconnected parts. 

18 G. S. Rushbrooke and H. 1. Scoins, Proc. Roy. Soc. 
(London) A230, 74 (1955). 

19 G. S. Rushbrooke and H. 1. Scoins, J. Math. Phys. 3, 
176 (1962). 

20 C. Domb and B. J. Hiley, Proc. Roy. Soc. (London) 
A268, 506 (1962). 
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3. THE LOW-TEMPERATURE ENUMERATIVE 
PROBLEM FOR AN ANTIFERROMAGNET 

In this section, we consider the antiferromagnetic 
problem for those lattices which can be decomposed 
into two equivalent sublattices. We shall denote 
these two sublattices by A and B and to avoid 
fractions it is convenient to use N for the number 
of A or B sites and thus to work with a 2N site 
lattice. (For the antiferromagnet J is negative and 
we shall write J' = -J.) The lowest energy state 
for small fields is now one of antiparallel ordering 
in which each A spin is in the opposite state to its 
nearest neighbors all of which are B spins. If such 
an ordered state is perturbed by the overturning 
of sA-spins and t B-spins with r nearest-neighbor 
links between them the resultant gain in energy 
is now 

2[q(s + t) - 2rJJ' + 2msH - 2mtH, (3.1) 

where we have supposed that the A sublattice is 
ordered in the direction of the external field. 

If there is no applied field (3.1) is identical with 
(2.1) and we have the well-known result that the 
configurational problem for a loose-packed Ising 
antiferromagnet in the absence of an applied field 
is isomorphic with the ferromagnetic one. It is 
implicit in (3.1) that 2J' now denotes the energy 
gained if two first-neighbor spins change from 
antiparallel to parallel position. To avoid confusion 
we shall follow Domb and introduce new variables 

y = exp (-2J' /kT) , (3.2) 

The energy per spin of the ground st.ate is now 
simply - !qJI and in place of (2.5) we write 

F = -!qJ' - kT In A4(p" w). (3.3) 

In the absence of a field the expansion valid near 
T = 0 will be 

In A" = L [s + t; r]wfq<B+O-., (3.4) 
all s+t of" 

and the coefficients will be term by term identical 
with (2.6) for p, = 1. 

In the presence of an applied field this isomor­
phism is destroyed. We shall find it convenient to 
modify the ferromagnetic problem to retain a formal 
isomorphism in the expansions. This isomorphism 
will not be a physical one since the power series we 
shall derive will have different regions of validity. 

Suppose that for a ferromagnet with two sub­
lattices A and B the spins on the A sublattice have 
moment mA and those on the B sublattice ma and 

we write 

exp (-2mAH/kT) = p" 

exp (-2maH/kT) = p. 

(3.5) 

The perturbation problem is now more complex 
since we must include in our description of a dis­
turbed state the distribution of overturned spins 
between the two sublattices. Denoting the linear 
part of the total number of ways of choosing 8 

A-sites, t B-sites with r first-neighbor bonds be­
tween them by [s, t; r] we require formally 

In A = L [8, Ii rJuhdh'-r p,'P'. (3.6) 
all 8.t.f' 

For the antiferromagnetic problem we see from 
(3.1) that the Boltzmann factor is 

(3.7) 

Thus, for a particular choice of (s + t) and r we 
obtain as the coefficient of wha+h l

-. a range of 
powers of p, from p,HI top,-·-I. The presence of 
inverse powers of p, alters the whole character of 
the expansion since when p, is small lip, is large 
and the converse. The development is therefore 
best thought of as an expansion in w for fixed p,. 
A formal isomorphism with (3.6) is obtained by 
setting p 1/ iJ., u = w. The required expansion is 
simply 

L [s, ti r]w;qa+tot-r iJ.'p, -'. (3.8) 
all B.t.r 

Expansions of this type have been given by Brooks 
and Domb21 for the simple quadratic lattice and by 
Wakefield13 for the simple cubic lattice. Both these 
authors have used the variable p, only and this is 
equivalent to writing 

(3.9) 

The treatment in this section, which introduces 
an isomorphic ferromagnetic problem, retains in 
the antiferromagnetic expansion information on 
the distribution of perturbed spins between the two 
sublattices. This information can be exploited to 
develop extrapolation techniques. In particular it 
enables the method of metastable approximations 
(Domb and Sykes22

) to be applied to the anti-

2\ J. E. Brooks and C. Domb, Proe. Roy. Soc. (London) 
A207, 343 (1951). 

22 C. Domb and M. F. Sykes, Proe. Roy. Soc. (London) 
A235, 247 (1956), 
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ferromagnetic problem. Also, so long as the dis­
tinction between II- and 11 is retained, generalized 
constraints between the [8, t; r] can be established 
along the lines used for the simple ferromagnetic 
problem and these constraints can be used to extend 
the data. We shall not describe these constraints as 
we shall propose in the next section an alternative 
method for deriving the polynomials for the sub­
lattice ferromagnetic problem (L •. ,) defined by 

L •. /(u) = L [8, tj r]Ul .. +iqt-r. (3.10) 
all r 

The quantities [8, t; r] can be obtained by direct 
enumeration by an obvious extension of the method 
of topological breakdown. For example the values, 
on the body-centered cubic, of [8, 0; 9], [7, 1; 9], 
[6, 2; 9], [5, 3; 9], [4, 4; 9] can be found by con­
structing a more detailed description of the per­
turbations shown in Fig. 1. For connected con­
figurations this presents no special difficulty but the 
calculation of the distribution of the separated 
configurations on the two sublattices is often tedious 
and liable to error. 

4. PARTIAL GENERATING FUNCTIONS FOR {s, tj rJ 

In previous sections we have shown that the 
derivation of low-temperature expansions can be 
made to depend on the quantities [8, t; rl. Defining 
a generating function F by 

F(X, Y, b) L [8, t; r]X' Y'b r
, (4.1) 

•• t. r 

a knowledge of F would be equivalent to a complete 
solution of the problem. We shall derive in this 
section partial generating functions which are 
equivalent to the solution of the problem when 
the number of overturned spins on one sublattice 
is held constant. Owing to the symmetric equivalence 
of the two sublattices a knowledge of the first n 
partial generating functions enables the values of all 
[8, t; r] with 8 + t :S 2n + 1 to be derived. Ex­
plicitly we write 

F(X, Y, b) = L Y>P>.(X, b), (4.2) 
A 

F}.(X, b) = L [8, X;rJX'b r
• (4.3) 

, .r 

We now take as a specific example the body­
centered cubic on which as we have seen the con­
figurational problem is relatively complicated. The 
first partial generating function, Fo, corresponds 
to configurations for which all the sites are on the 
A sublattice. Such sites cannot be neighbors of one 

another and therefore r = 0 always. We may choose 
an A site on an infinite lattice of 2N sites in N 
ways, and then another in (N - 1) ways and so 
on to obtain each selection of 8 sites 8! times. 
(8, OJ 0] is, therefore, the coefficient of N in 

N(N - l)(N - 2) ••• (N - 8 + 1)/8! 

or (-1)'+1/8 • (4.4) 

The function F 0 is thus simply 

Fo(X, b) = In (1 + X). (4.5) 

If all the sites but one are A-sites we first choose 
the B-site (N ways) and observe that it casts a 
"shadow" on the eight neighboring A-sites in the 
sense that if anyone of these is now selected a 
nearest-neighbor bond will be formed. If we choose a 
A-sites from the eight sites in the "shadow" and 
{3 A-sites from the remaining (N - 8) sites we shall 
obtain a bonds in 

(!)(N - 8)(N - 9) ... (N - 8 - (3 + 1)/{3! (4.6) 

ways. The appropriate term of the expansion of F 1 

is, therefore, the term linear in N in this, or 

(4.7) 

and, therefore, 

Fl(X, b) = (1 + bX)8(1 + X)-s. (4.8) 

To derive the next partial generating function 
we observe that the two B-sites each cast a "shadow" 
of eight sites (in the form of a cube) and that these 
shadows may overlap. The two sublattices on the 
body-centered cubic form simple cubic lattices and 
the possible overlappings of the two /I shadows" 
correspond to the various ways in which two cubes 
may be chosen on a simple cubic lattice. There are 
four distinct cases: 

Face-to-face (3N) 

Edge-to-edge (6N) 

(4.9) 

(c) ~ Corncr-to-comer (4N) 

(d) G.SJ G.SJ Separated (!N2 
- 13!N). 
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In (a) the two cubes have one face in common 
which means that only 12 A-sites are shaded by the 
2 B-sites. Of these 12 sites the 4 on the common 
face will create two bonds if chosen since they are 
adjacent to both B-sites. The appropriate generat.­
ing function is now 

(4.10) 

Each of the three remaining cases can be treated 
similarly and on multiplying up by their respective 
occurrences we obtain 

Fz(X, b) = 3(1 + bX)8(1 + b2X)4(1 + X)-12 

+ 6(1 + bX)12(1 + b2X)2(1 + X)-a 

+ 4(1 + bX)I\1 + b2X)(1 + Xr15 

(4.11) 

Expressions such as (4.11) are relatively cumber­
some and we observe that the general term in 
F .. (X, b) will be some multiple of 

(1 + bX)"'(1 + b2Xt(1 + b3Xrr ... 
(4.12) 

and we shall denote this by 

(A, a, (3, "1, ••. ), A = a + {3 + "1 + "', (4.13) 

which is simpler and forms a convenient H code" 
for supplying data of this type to an electronic 
computor. We shall close the bracket when factors 
to the right terminate but zeros will occur in the 
code if any factors are missing in the sequence. 

On the body-centered cubic the determination 
of the next two partial generating functions Fa 
and F4 is now reduced to the counting and classify­
ing of all the possible ways of selecting three and 
four cubes on the simple cubic lattice and de­
termining the respective "codes" of each con­
figuration. This combinatorial problem is closely 
related to the Ising problem on the simple cubic 
with first-, second-, and third-neighbor interactions. 
Referring again to (4.9) the 3N arrangements 
face-to-face correspond to the 3N first-neighbor 
interactions, the 6N edge-to-edge correspond to the 
6N second-neighbor interactions (these form a face­
centered cubic lattice), and the 4N corner-to­
corner correspond to the 4N third-neighbor inter­
actions (these form a body-centered cubic lattice). 
We have exploited this isomorphism to classify and 
count the 13 combinations of 3 cubes and the 80 
combinations of 4 cubes and so derive the next two 

partial generating functions. This suffices to de­
termine the first nine low-temperature polynomials 
L(u) of (2.7) for this lattice. The results can be 
expressed compactly in the form of the codes as: 

FI = 1(8,8), 

F2 = 3(12, 8, 4) + 6(14, 12, 2) 

+ 4(15,14, 1) - 13!(16, 16), 

Fa = 3(16, 8, 8) + 12(16, 10, 4, 2) + 24(18, 12, 6) 

+ 24(18, 13,4, 1) + 24(19, 14, 5) 

+ 8(19, 15,3, 1) - 66(20, 16,4) + 72(21, 18,3) 

- 224(22, 20, 2) - 184(23, 22, 1) + 307t(24, 24), 

F4 = 3(18, 8, 8, 0, 2) + 3(20, 8, 12) 

+ 24(20, 10, 8, 2) + 24(20, 12, 4, 4) 

+ 24(20, 12,5,2, 1) + 8(20, 13,3,3,1) 

+ 6(21, 12, 8, 0, 1) + 24(21, 13, 6, 1, 1) 

+ 48(22, 12, 10) + 72(22, 13,8, 1) 

+ 132(22, 14, 6, 2) + 96(22, 15,4, 3) 

+ 60(23, 14,9) + 24(23, 15,7, 1) 

+ 168(23, 16, 5, 2) + 2(23, 16, 6, 0, 1) 

- 115!{24, 16,8) + 312(24,17,6,1) 

- 444(24, 18, 4, 2) + 504(25, 18, 7) 

+ 432(25, 19, 5, 1) - 1594(26, 20, 6) 

- 1104(26,21,4,1) - 1116(27,22,5) 

- 424(27,23,3,1) + 1479(28,24,4) 

- 5724(29,26,3) + 7962(30,28,2) 

+ 7836(31,30,1) - 8721!(32, 32), (4.14) 

From (4.14) we can obtain, by expanding and 
picking out the terms, complete information on 
[8, t; r] for all 8 + t S 9. For example to derive the 
antiferromagnetic breakdown of the perturba­
tions in Fig. 1. we require the coefficient of bQ for 
all 8 + t = 8 and this is found to be 

384X6 y2 + 17632X5 y3 + 46672X4 y4 

+ 17632X3 y5 + 384X2Y6. (4.15) 

On adding these coefficients together we obtain 

[8; 9] = 82704 on 2N sites, 

= 41352 on N sites. 
(4.16) 
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The method can be applied to any loose-packed 
lattice and we shall in general find that each A-site 
or B-site casts a "shadow" conveniently thought 
of as a solid figure formed by the first-neighbor 
shell. These shadows must be classified for their 
possible overlappings and for this purpose it is 
convenient to study another partially isomorphic 
Ising problem which may be one involving more 
than near-neighbor interactions as we have seen in 
our example. The isomorphism is not complete 
in the sense that the coding rules are not always 
simply related to the corresponding Ising con­
figuration. It is, however, possible to code most 
of the simple lattices with equivalent sites and 
bonds from information given on the· corresponding 
"shadow lattice." We summarize these in Table I. 

The honeycomb and diamond lattices lead to first­
neighbor shadow lattices. On the honeycomb each 
A-spin casts a triangular shadow of B-spins and 
any pair of these triangles, if they overlap at all, 
can only have one point in common. Each triangle 
is surrounded by six others the over-all topological 
linkage of possible contacts being a triangular 
lattice. A choice of say three triangles on the 
honeycomb lattice corresponds to a choice of three 
sites on this triangular lattice. Further if any pair 
of triangles touch, the corresponding configuration 
on the triangular shadow lattice will contain a first­
neighbor bond. To obtain F 3 we need the codes 
appropriate to all the possible choices of three 
spins on the triangular lattice. These choices are 
listed in Appendix I. The codes are not difficult 
to provide and we observe that a triangle of spins 
can correspond to two possible overlappings of 
three triangles in accordance with the scheme 

L (2N) --t ;jy (N) + '{j (N) (4.17) 

by symmetry and the appropriate coding will 
therefore be 

1(7,6,0, 1) + 1(6,3,3). (4.18) 

We give in the last two columns of Appendix I 
the codes for the honeycomb and diamond lattices. 
To obtain the contribution to F each entry should 
be multiplied by the corresponding occurrence 
factor. In a similar way the codes for the white 
tin lattice can be derived from data on the close­
packed hexagonal lattice but as this latter is not 
a bravais lattice, the corresponding "white tin 
code" is relatively complicated. 

The simple cubic lattice leads to the problem 

TABLE!. Loose-packed lattices and their respective "shadows." 

Lattice 

Honeycomb 
Simple 

quadratic 
Diamond 
White tin 
Simple cubic 

Shadow 

Triangle 
Square 

Tetrahedron 
Tetrahedron 
Octahedron 

Body-centered Cube 
cubic 

Shadow lattice 

Triangular lattice 
Simple quadratic lattice with 

first and second neighbors 
Face-centered cubic lattice 
Close-packed hexagonal 
Face-centered cubic lattice 

with first and second 
neighbors 

Simple cubic lattice with 
first, second, and third 
neighbors 

of choosing octahedra and the shadow lattice is 
the face-centered cubic with second-neighbor bonds. 
A first-neighbor bond corresponds to two octahedra 
edge-to-edge and a second-neighbor bond to two 
octahedra corner-to-corner. To obtain F 6 every 
arrangement of five octahedra must be classified. 
Among the most difficult are the separated ar­
rangements such as, for instance, the contribution 
from five octahedra, no one touching any other. 
This is just the number of completely separated 
five spins for the Ising problem (face-centered cubic 
with second neighbors) on the shadow lattice and 
may be deduced by using the constraints already 
referred to in Sec. 2. In this we have been assisted 
by N. Dalton who has derived the first five low­
temperature polynomials for this second-neighbor 
problem. 

In Appendix II, we give the partial generating 
functions we have derived. 

5. APPLICATIONS 

From the partial generating functions in Ap­
pendix II the complete free-energy expansion for 
the two sublattice ferromagnet can be derived for 
all 8 + t ~ 2n + 1 where F" is the last partial 
generating function available. We shall not quote 
these expansions explicitly because of the extent 
of the data. The manipulation of such expansions 
is only conveniently done on a computer and for 
this purpose the coded partial generating func­
tions would seem to provide a convenient form of 
the data. Each new partial generating function when 
expanded must reproduce the earlier terms correctly 
and this fact provides a most useful test of the 
correctness of the underlying enumeration. 

The partial generating functions up to F" de­
termine the ferromagnetic polynomials up to 
L 2n+ 1 (U) and we quote these in Appendix III. For 
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the simple quadratic lattice we have obtained 13 
polynomials and the first 10 are in agreement with 
those given by Sykes.16 For the triangular lattice 
we give 8 and the first 6 are in agreement with 
Domb and Sykes.22 For the face-centered cubic 
we have done no more than verify the results of 
Domb and Hiley.20 We give 13 polynomials for 
the honeycomb and diamond lattices and these 
are new. For the simple cubic we give 11 the first 
8 being in agreement with Domb and Sykes.22 

For the body-centered cubic we give 9 the first 8 
being in agreement with Rushbrooke and Scoins19 

apart from an obvious misprint. It is still feasible 
in most cases to obtain further generating func­
tions without undue labor and we are continuing 
with this work. These polynomials L(u) provide 
an expansion of the free energy grouped in powers 
of p. (p. grouping). 

For some studies, in particular those of the 
spontaneous magnetization and the specific heat 
in zero field, it is convenient to group in powers 
of u (u grouping). To extend the u grouping it 
is an advantage to know the leading terms in higher 
L(u). These extra coefficients can be obtained by 
the method of topological breakdown or alter­
natively by enumerating only those • codes' whose 
expansion will make a contribution to the required 
coefficient. We have extended the u grouping by 
these methods and derived expansions for the 
configurational free energy in the absence of a 
field and we give these in Appendix IV. The corre­
sponding expansions for the reduced configurational 
energy U(u) and the specific heat at constant field 
CH can be derived through the defining relations 

U(u) = 4u aL/au, L = In A (5.1) 

CH/R(lnu)2 = iuaU/au (5.2) 

From the same data the reduced spontaneous 
magnetization leu) and the low-temperature zero­
field ferromagnetic reduced susceptibility x(u) can 
be obtained through the defining relations 

leu) = 1 - 2p. aLI ap' I~-l' (5.3) 

x(u) = (2p. a/ap.)2L I~-l' (5.4) 

We give the magnetization expansions and the 
expansions for In A in the absence of a field in 
Appendix IV. 

For the antiferromagnetic problem we have de­
rived the free energy expansion in the form adopted 
by Brooks and Domb21 for the simple quadratic 

lattice and by Wakefield13 for the simple cubic 
lattice as 

(5.5) 

where each coefficient ak is a polynomial in powers 
of p. and 1/ p.. These must occur symmetrically and 
it is convenient to write 

On = J.t + p.-n. (5.6) 

We give these antiferromagnetic expansions in 
Appendix V together with the derived expansions 
for the corresponding reduced antiferromagnetic 
zero-field susceptibility x"(y) 

x"(y) = (2p. a/ap.)2L" L-l' (5.7) 

For the simple quadratic we have added two, and 
for the simple cubic four, more terms to those 
available previously. The data for the honeycomb, 
diamond, and body-centered cubic lattices are new. 

As stated in the introduction we shall not make 
any analysis here of the data we have derived. 
The data for the two sublattice model is being 
analyzed in collaboration with Bienenstockll with 
a view to its application to the nonstoichiometric 
alloy problem. The data for the simple Ising model 
is being studied in collaboration with Fisher7 to 
elucidate the behavior of the magnetization in the 
presence of a field. Weare also extending the 
calculations outlined in this paper to provide 
further data. With the recent improvements in 
extrapolation methods it should be possible eventu­
ally to resolve most of the obscurities still extant 
in our understanding of the physical properties of 
the three-dimensional Ising model; such as for 
example the critical behavior of the ferromagnetic 
susceptibility just below the Curie point and the 
relationship of this to the specific heat singularity.23 
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APPENDIX I. TABLE OF THE PERTURBATIONS OF UP TO FIVE SPINS ON THE TRIANGULAR AND 
FACE-CENTERED CUBIC LATTICES 

Coeff. N. Coeff. N. Diamond 
Configuration Alar fcc H.-C. Code Code 

• +1 +1 (3,3) (4,4) 

....... +3 +6 (5,4, 1) (7, 6, 1) 

• • -3t -6! (6,6) (8,8) 

A +2 +8 
t(7, 6, 0, 1) !(9, 6, 3) 
!(6, 3, 3) t(lO, 9,0, 1) 

~ +9 +42 (7, 5, 2) (10, 8, 2) 

/. -30 -120 (8,7, 1) (11, 10, 1) 

• • • +191 +70! (9,9) (12, 12) 

~ 0 +2 !(10, 4, 6) 
1(13, 12, 0, 0, 1) 

I2l +3 +24 (8, 5, 2, 1) (12,9,2,1) 

D 0 +3 (12, 8, 4) 

h/ +12 +120 t(8, 4, 4) !(I2, 8, 4) 
!(9, 7, 1, 1) !(13, 11, 1, 1) 

N +27 +282 (9, 6, 3) (13, 10, 3) 

~ +2 +44 (9, 6, 3) (13, 10, 3) 

~. -24 -200 t(lO, 9, 0, 1) 
l(9, 6, 3) 

!(I3, 10,3) 
!(14, 13,0, 1) 

--~ -61l -531 (10,8,2) (14, 12, 2) 

~ -117 -1122 (10, 8, 2) (14, 12, 2) 

~ +288 +2322 (11, 10, 1) (15, 14, 1) 
• 

• -1291 -9441 (12, 12) (16, 16) 
• • • 
~ 0 +6 (14, 10, 2, 2) 

~ 0 +24 !(13, 7, 5, 1) 
!( 15, 12, 2, 0, 1) 
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Coef!. N. Coef!. N. Diamond 
Configuration t.lar fcc H.-C. Code Code 

W +6 +72 l(9, 4, 4, 1) i(14, 9, 4,1) 
l(lO, 7, 1, 2) i(15, 12, 1, 2) 

N-
W3, 6, 7) 

0 +24 l(16, 14, 1,0, 1) 

~- 0 -56 !(14, 8, 6) 
!( 17, 16, 0, 0, 1) 

D- O +24 !(14, 8, 6) 
!(15, 11,3, 1) 

0'- +6 +168 

} a- (10,6,3, 1) (15, 11,3, 1) 

+12 +240 

!Xl { 1(14,8,6) 
+3 +72 (10, 6, 3, 1) j(15, 11, 3, 1) 

i(16, 14, 0, 2) 

IJt 0 +48 (15, 10, 5) 

1> +36 +792 

~ +24 +576 l{lO, 5, 5) !(15, 10, 5) 
!(U, 8, 2, 1) !(16, 13, 2, 1) 

IX 0 +96 

0- -42 -720 (11,8,2, 1) (16, 13, 2, 1) 

0- 0 -90 (16, 12, 4) 

1>'- -96 -1728 

} !(12, 10, 1, 1) !(16, 12,4) 

~-
!(11, 7, 4) l(17, 15, 1, 1) 

-180 -3792 

M +81 +1902 

fL. +18 +828 (11, 7, 4) (16, 12, 4) 

X 0 +9 

I>: +252 +4328 !(13, 12, 0, 1) l(17, 14,3) 
l(12, 9, 3) !(18, 17, 0, 1) 
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Coot!. N. Coet!. N. 
Configuration 

:re 

N. 
A\ 
II. 
r.. 
---••• 
• • 

• • • 

Fi = 1(3,3), 
F2 = 3(5,4,1) - 3!(6, 6), 

d lar fcc H.-C. Code 

-32 -1448 

-432 -9444 (12, 9, 3) 

-468 -9732 

+1350 +24006 (13, 11, 2) 

+1287 +25284 (13, 11, 2) 

-2796 -45792 (14, 13, 1) 

+971i- + 14303i (15, 15) 

APPENDIX II. PARTIAL GENERATING FUNCTIONS 

Honeycomb Lattice 

Fa = 1(6,3,3) + 9(7, 5, 2) + 1(7,6,0,1) - 30(8,7,1) + 191(9,9), 
F~ = 6(8,4,4) + 3(8,5,2, 1) + 17(9,6,3) + 6(9,7,1,1) - 178!(10, 8, 2) 

Diamond 
Code 

(17,14,3) 

(18,16,2) 

(18, 16, 2) 

(19, 18, 1) 

(20, 20) 

- 12(10,9,0,1) + 288(11, 10, 1) - 129£(12, 12), 
Fs = 3(9,4,4, 1) + 30(10, 5, 5) + 21(10, 6, 3,1) + 3(10, 7, 1,2) - 39(11,7,4) - 12(11,8,2,1) 

- 806(12,9,3) -138(12,10,1,1)+2637(13,11,2)+126(13,12,0,1) -2796(14,13,1)+9711(15,15), 
F8 = 1(10,3,6,1) + 3(11,4,7) + 21(11,5,5,1) + 12(11,6,3,2) + 131!{12, 6, 6) 

+ 75(12,7,4,1) + 21(12,8,2,2) + 1(12,9,0,3) - 726(13,8,5) - 400(13,9,3,1) 
- 45(13, 10, 1,2) - 2353!(14, 10,4) - 594(14, 11,2, 1) - 9!(14, 12,0,2) + 18097(15, 12, 3) 
+ 2217(15, 13, I, 1) - 34920(16, 14,2) - 1290(16, 15,0,1) + 27555(17, 16, 1) - 77961(18,18). 

Simple Quadratic Lattice 
Fl = 1(4,4), 
F2 = 2(6,4,2) + 2(7,6,1) ,- 4!(8, 8), 
Fa = 2(8, 4, 4) + 4(8, 5, 2, 1) + 8(9, 6, 3) - 18(10, 8, 2) - 28(11, 10, 1) + 321(12, 12), 
F4 = 1(9,4,4,0,1) + 2(10,4,6) + 8(10,5,4,1) + 8(10, 6, 2, 2) + 16(11,6,5) + 20(11,7,3,1) 

- 24(12,8,4) - 60(12,9,2, 1) - 190(13, 10,3) + 140(14, 12, 2) + 362(15, 14, 1) - 283i,(16, 16), 
Fs = 8(11, 5,4, 1, 1) + 2(12,4,8) + 12(12,5,6, 1) + 28(12, 6,4,2) + 4(12, 6, 5, 0, 1) 

+ 12(12,7,2,3) + 1(12,8,0,4) + 24(13,6,7) + 84(13, 7, 5, 1) + 48(13, 8, 3, 2) - 16(13,8,4,0,1) 
- 208(14,9,4, 1) - 144(14,10,2,2) - 592(15,10,5) - 564(15, 11,3,1) - 160(16,12,4) 
+ 804(16, 13,2, 1) + 3296(17, 14,3) - 738(18, 16,2) - 4672(19, 18, 1) + 2771t(20, 20), 

F6 = 2(12,4,6,0,2) + 8(13, 5, 6, 1, 1) + 28(13,6,4,2, 1) + 4(13,7,2,3, 1) + 2(14,4, 10) 
+ 16(14,5,8,1) + 66(14,6,6,2) + 8(14,6,7,0,1) + 72(14,7,4,3) + 40(14, 7, 5,1,1) 
+ 24(14,8,2,4) + 32(15,6,9) + 188(15,7,7,1) + 318(15,8,5,2) - 22(15,8,6,0,1) 
+ 84(15,9,3,3) - 152(15,9,4, 1, 1) + 8(15, 10, 1,4) +62(16,8,8) - 208(16,9,6, 1) 
- 910(16, 10,4,2) - 130(16, 10,5,0, 1) - 252(16, 11,2,3) - 21(16, 12,0,4) - 1202(17,10,7) 
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- 3732(17,11,5, 1) - 1472(17,12,3,2) + 222(17, 12,4,0,1) - 2617!(I8, 12,6) 
+ 2780(18, 13,4,1) + 2128(18,14,2,2) + 12914(19, 14,5) + 11500(19, 15,3,1) + 13142(20, 16,4) 
- 10604(20, 17, 2, 1) - 50455!(2I, 18, 3) - 3634(22, 20, 2) + 60860(23, 22, 1) - 29096!(24, 24). 

Diamond Lattice 
Fl = 1(4,4), 
F2 = 6(7,6,1) - 6!(8,8), 
Fa = 4(9,6,3) + 42(10, 8, 2) + 4(10,9,0, 1) - 120(11, 10, 1) + 70t(12 , 12), 
F4 = 1(10,4,6) + 63(12, 8,4) + 24(12, 9, 2, 1) + 226(13, 10,3) + 60(13, 11, 1, 1) 

+ 1(13, 12,0,0, 1) - 1653(14, 12, 2) - 100(14, 13, 0, 1) + 2322(15, 14, 1) - 944t(16, 16), 
F~ = 12(13,6,7) + 12(13,7,5, 1) - 4(14,8,6) + 36(14,9,4, 1) + 6(14, 10,2,2) 

+ 780(15, 10,5) + 468(15, 11,3,1) + 36(15, 12, 1,2) + 12(15,12,2,0,1) - 111(16,12,4) 
+ 12(16,13,2,1) + 12(16,14,0,2) + 12(16,14,1,0,1) - 18460(17,14,3) - 2760(17, 15, 1, 1) 
- 28(17, 16,0,0,1) + 49290(18,16,2) + 2164(18, 17,0,1) - 45792(19, 18, 1) + 14303t(20, 20), 

F6 = 24(15,7,7, 1) + 12(15,8,5,2) + 156(16,8,8) + 208(16,9,6, 1) + 60(16, 10,4,2) 
+ 6(16, 10,5,0,1) + 1(16, 12,0,4) - 72(17,10,7) + 624(17, 11,5,1) + 360(17, 12,3,2) 
+ 48(17,12,4,0,1) + 12(17,13,1,3) + 12(17,13,2,1,1) + 8588(18, 12,6) + 5568(18, 13,4,1) 
+ 690(18, 14,2,2) + 192(18, 14,3,0,1) + 16(18,15,0,3) + 24(18, 15, 1, 1, 1) - 30318(19, 14,5) 
- 15356(19,15,3,1) - 906(19,16,1,2) - 258(19,16,2,0,1) -154464(20,16,4) - 34752(20,17,2,1) 
- 782(20,18,0,2) - 660(20,18,1,0, 1) + 816900(21,18,3) + 90240(21,19,1, 1) + 646(21,20,0,0, 1) 
- 1329240(22,20,2) - 45628(22,21,0, 1) + 922152(23,22, 1) - 234103·H24, 24). 

Simple Cubic Lattice 
Fl = 1(6,6), 
F2 = 6(10,8,2) + 3(11, 10, 1) - 9!(12, 12), 

Fa = 8(13,9,3,1) + 30(14, 10,4) + 12(14,11,2,1) + 48(15,12,3) 
- 153(16,14,2) - 96(17,16,1) + 151!(18, 18). 

F4 = 12(16, 10,4,2) + 12(16,10,5,0,1) + 2(16, 12,0,4) + 72(17, 11, 5,1) 
+ 48(17, 12,3,2) + 3(17, 12,4,0,1) + 164(18,12,6) + 216(18, 13,4,1) 
+ 24(18, 14, 2, 2) + 480(19, 14, 5) - 140(19, 15,3, 1) - 1428(20, 16,4) 
- 444(20, 17,2,1) - 2689(21,18,3) + 3808!(22, 20, 2) + 2865(23,22,1) - 3OO5t(24, 24), 

F6 = 6(18,9,8,0,0,1) + 24(19, 11, 5, 3) + 48(19, 11,6,1,1) + 24(19, 13,2,3,1) + 132(20, 12,6,2) 
+ 96(20, 12,7,0,1) + 120(20, 13,4,3) + 144(20.13,5,1,1) + 36(20, 14,2,4) + 624(21,13,7,1) 
+ 840(21, 14,5,2) + 144(21, 14, 6,0, 1) + 168(21. 15,3,3) + 24(21, 15,4, 1, 1) + 24(21, 16, 1,4) 
+ 966(22, 14,8) + 2652(22, 15,6, 1) + 618(22, 16,4,2) - 444(22, 16,5,0, 1) + 36(22, 17,2,3) 
- 77(22, 18,0,4) + 4128(23, 16, 7) - 1932(23,17,5,1) - 1728(23,18,3,2) - 126(23,18,4,0,1) 
- 10742(24,18,6) - 13788(24,19,4,1) - 1104(24,20,2,2) - 42096(25,20,5) - 172(25,21,3, 1) 

+ 46647(26, 22, 4) + 14256(26,23,2, 1) + 114328(27,24,3) 
- 95520(28,26,2) - 85884(29,28,1) + 67528l(30, 30). 

Ll = uS, 

L2 = 3ua - 3!u6
, 

APPENDIX m. FERROMAGNETIC POLYNOMIALS L (u) 

Triangular 

La = 2u& + 9u7 
- 3Qzl + 19ju9, 

L, = 3u? + 12u8 + 5uo - 178!u10 + 288u11 
- 129tu12

, 

L{I = 6u8 + 21u9 + 18u10 
- 177u11 

- 680tr + 2637u13 
- 2796u14 + 971!1P, 

L6 = 14u9 + 42u10 + 33u11 
- 278u12 

- 1320u13 
- 136!1l4 + 16807u16 

- 34920u16 + 27555u
11 

- 7796~tr, 
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L7 = U
9 + 30u10 + 105ull + 24u12 - 564u13 - 2682u14 

- 3007uu + 21168u1
& 

+ 63870u17 - 307470018 + 437997u19 - 275184u20 + 65718tu21
, 

L8 = 0010 + 69ull + 227u12 + 12Ou13 
- 1822tu14 

- 5313u16 
- 8859u18 + 30825u17 + 165894tu

18 

- 58668u19 - 1907846tu20 + 4905025u21 - 5324130u22 + 2778678u23 - 574205tu24
• 

Face-Centered Cubic 
LI = u6

, 

L2 = 0011 
- 6tu12 , 

La = 8u l6 + 42u16 - 12Ou17 + 70tu18 
, 

L4 = 2U18 + 24u19 + 123u20 + 126u21 - 1653u22 + 2322u23 - 944iu24 , 
Lr. = 30u22 + 96u23 + 448u24 + 792u25 - 2871u26 

- 16296u27 + 49290u28 - 45792u29 + 14303lu30
, 

L6 = U
24 + 30u2S + 168u26 + 776u27 + 1212u28 + 3930u29 - 6904u30 

.;... 65070u31 

L1 = Z3, 
L2 = l!z' - 2z6, 

L3 = 3z5 
- 9z7 + 6lz9

, 

L4 = 7z6 
- 33!Z8 + 51z10 - 24!Z12, 

- 64224u32 + 771272u33 - 1329240u34 + 922152u35 - 234103iu36• 

Honeycomb 

L5 = 18i - 121z9 + 288z11 
- 291z13 + 106lls , 

L6 = !Z6 + 46!Z8 - 421!zIO + 1400!l2 - 2212!l4 + 168I!z16 - 495iz18
, 

L7 = 3z7 + 116z9 
- 1422z11 + 6225zta 

- 13647z16 + 1612817 - 9831z19 + 2428tll, 
L8 = 13!z8 + 270z10 - 4640!l2 + 25938z14 

- 74083izl6 + 120844z18 
- 114043!z20 + 58056z22 - 12353!l\ 

L9 = 55z9 + 534z11 
- 14583z13 + 102659z15 

- 36787817 + 776475z19 

- l007093z21 + 790929z23 - 345741z25 + 64643iz27 , 
LIO = I!zs + 199!z10 + 639!l2 - 43740z14 + 388501!z16 - 1706988tl8 + 4480345tlO 

- 7483705!l2 + 805017714 
- 5413245z26 + 2073639z28 - 345824/irio, 

L11 = 12z9 + 654z11 
- 1275z13 

- 12346615 + 1409742i7 
- 7495464z19 + 23835698z21 - 49234914z23 

+ 67965699z25 - 6242723817 + 36699132z29 - 12512061iI + 1883481-hz33 , 
L12 = 67!Z10 + 1938il2 - 13866z14 - 319373iz16 + 4905536!l8 - 31390220ilo 

+ 118851003z22 - 2954217691z24 + 502353217!z26 - 590506164!z28 
+ 473111748z30 - 247047660!i2 + 75886312!z34 - 10410769-Ai6

, 

L13 = Z9 + 318z11 + 501313 
- 70989z15 

- 71180117 + 16327032z19 
- 125973077z21 + 561454560z23 

- 1647593244z26 + 3356405218z27 - 484590621919 + 4957723473z31 

- 3521641853i3 + 1654028712z35 
- 462310344z37 + 582632(}()-hz39. 

Simple Quadratic 
Ll = u2

, 

L2 = 2u3 
- 2!u4

, 

L3 = 6u· - 16ur. + lOtu6
, 

L4 = u 4 + 18u5 
- 85u8 + 118u7 - 52tu8

, 

La = 8us + 43u8 
- 400u7 + 926u8 

- 872u9 + 295!u10
, 

L6 = 2u5 + 40u6 + 30u7 - 1651u8 + 5992ju9 - 9144u10 + 6520u11 
- 1789!uI2

, 

L7 = 22u
6 + 136u

7 
- 486u8 

- 5664u9 + 33609u10 
- 75640u11 + 85954u12 

- 49328u18 + 11397tu14
, 

L8 = 6u
6 + 134u7 + 194!u8 

- 3986uQ 
- 13323u1o + 164790ull 

- 532196!u12 

+ 867670u13 
- 785091u14 + 377040u18 

- 75238iu16
, 

L9 = u
6 + 72u

7 + 540u8 
- 1420u9 

- 19786u1o + 5112ull + 691734u12 - 3282328u13 + 7330033u14 

- 9367653ju15 + 7040042u16 
- 2906956u17 + 510609juls. 
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L ,O = 30u
7 + 461u8 + 1144u9 

- 15480u'o - 66020u1l + 300885!U'2 + 2300266u'3 
- 17888832u14 

+ 53980742iu15 
- 92320336u16 + 97010462u'7 

- 62337864u'S + 22576512u'9 
- 3541971u20

, 

Lll = 8u
7 + 31Ou8 + 1864u9 

- 3373u'O 
- 91688ull 

- 69358u'2 

+ 2204652u'3 + 4259359u'4 
- 85259912u15 + 353290460U'6 

- 787713256u17 

+ 1092475985u'8 
- 974679560uJ9 + 547000294u20 

- 176425772u2I + 25009987r\u22
, 

L'2 = 2u
7 + 151u8 + 1894u9 + 3315u1o 

- 53428ull 
- 383706iu12 + 1032758ul3 + 10552273u14 

- 14665400u15 
- 341367843!u'6 + 2067415954u17 5967607048tu18 + l0581976596u19 

- 12347150173u20 + 9570815133iu21 
- 4767367976u22 + 1386008952u23 

- 179211452Hu2
\ 

L13 = 68us + 1340u9 + 7389u10 
- 20332ull 

- 350828u12 
- 965172u13 + 10420351u14 

+ 32176924ul5 
- 210691538u16 

- 1007111904u'7 + 10753093949u18 

- 4Q670308548u19 + 90746211502u20 
- 133748320084u21 + 134710804372u22 

- 92310171884u23 + 41333506670u24 
- 10938421828u25 + 13001395531\u26. 

Diamond 
Ll = u2

, 

L2 = 2u3 
- 2tu4

, 

La = 6u4 
- 16u5 + lOiu6

, 

L4 = 22u5 
- 91u6 + 122u7 

- 53!uS
, 

Ls = 9lu6 
- 512u7 + 1054u8 

- 944u9 + 311!u'O , 

L6 = 2u6 + 396u7 
- 2877u8 + 8066iu9 

- l1058u' () + 7442u" - 1971iu12
, 

L1 = 24u
7 + l746u8 

- 16072u9 + 57749u'O 
- 107608ull + 1l0586ul2 

- 59640U'3 + 1321Mu1
\ 

Ls = 207us + 7574u 9 
- 88765u10 + 395018ull 

- 939367tu12 

+ 1309590u'3 
- 1076491u14 + 484522u15 

- 92287iu'6
, 

Lg = 6us + 1508u9 + 31365u1o 
- 482136ull + 2607402u12 

- 7618128u13 

+ 13515382u14 
- 15044957ju15 + 10305468u16 

- 3980980U17 + 665070tulS
, 

L IO = US + 102u9 + 9834u10 + 118568ull 
- 2562436tul2 + 16692444u'3 

- 58481770uH 

+ 126923238iu1s 
- 179415170ul6 + 166182038ul7 

- 97571488u1s + 33017786ul9 
- 4913147u20

, 

Lu = 16u 9 + 1120ulO + 58920ull + 368354u12 
- 13251196uJS + 103918606u14 

- 429703296uIS + 1111277214uI6 
- 1916295528u17 + 2250195820u's 

- 1784298632u19 + 916718762u20 
- 276020892u2I + 37030732tru22

, 

LI2 = 198u 'O + 9894u" + 327231u'2 + 558252u'3 
- 66199876u14 

+ 629834815tu15 
- 3043196788!u16 + 9208521432u17 

- 1885221087Hu18 + 26950755018u19 

- 27056350183u20 + 18753735784iu21 
- 8565084633u22 + 2323063572u23 

- 283763845iu
24

, 

L '3 = 12u1o + 2064u" + 75536u12 + 1682888u13 
- 4273104u14 

- 316157712u1s + 37I6643708u16 

- 20868409268u17 + 72935017570u18 
- 173881731776u19 + 294393454158u20 

- 359264976320U21 

+ 314923472587u22 
- 193868155232u23 + 79693566888u24 

- 19665127716u25 + 2204915717J\u26
• 

Simple Cubic 

Ll = uS, 

L2 = 3us 
- 3!u6

, 

Ls = 15u7 
- 36u8 + 21tu9

, 

L4 = 3us + 83u9 
- 328tu10 + 405u" - 162!u12

, 

Ls = 48u10 + 426ull 
- 2804u12 + 55321/3 

- 4608u14 + 1406!u15
, 

L6 = 18ull + 496u12 + 1575u13 
- 22144tul4 + 64574u15 

- 84738uI6 + 53370U17 
- 13150~uI8, 

L7 = 8U12 + 378uI3 + 3888u14 
- 1360u's - 157380u16 + 674652u17 

- 1261904u18 + 1240035u19 
- 628236u20 + 129919+U21

, 
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Ls = U12 + 306u14 + 4622u15 + 22396!U16 - 106113u17 - 947582!u1S + 6392769u
19 

- 16362155iu20 + 22521935u21 
- 17686675!u22 + 7496787u23 - 1336290-!u

24
, 

L9 = 24u14 + 127u 15 + 5544u16 + 40050u17 + 60804u18 - 1368954u19 - 3978300u
20 + 54753064u

21 

- 190517760u22 + 348702921u23 - 379686836u24 + 248294610u25 
- 90480828u26 + 14175534ju2\ 

LIO = 24u1S + 396u16 + 4131u17 + 67267u18 + 236808u19 - 614784u20 

- 12412763u21 + 2839656u22 + 414942978u23 - 2018275270u24 + 4793140380!u2S 

- 6835882485u26 + 6156900766u21 - 3449297064u28 + 1102444428u29 - 154094468T'ou30
, 

L11 = 24u16 + 660u17 + 6656u1S + 70275u19 + 602928u20 + 423644u21 - 12635748u22 
- 86214999u23 

+ 306005260u24 + 2620578876u25 - 19491928200u26 + 59739201959u27 
- 108143883564u28 

+ 126406988784u29 
- 97076564452u30 + 47569139712uBl 

- 13540389348u32 + 1708597533r1:u
33

. 

Body-Centered Cubic 
Ll = u·, 
L2 = 4u7 

- 4!u\ 
La = 28u10 

- 64ull + 36iu12 , 
L4 = 12u12 + 204u13 - 798u14 + 948u15 - 366iu16

, 

L5 = 12u14 + 216u15 + 1262u16 - 9072u17 + 17592u18 - 14184u19 + 4174}u20 , 
L6 = 27u16 + 312u17 + 2368u1S + 4312u19 - 92992u20 + 275021 iU21 

- 353640U22 + 216030023 - 51444!u24
, 

L1 = 72u1S + 704u19 + 4404u20 + 17616u21 - 36348u22 - 833064~3 

+ 3795726u24 
- 7072736u25 + 6798900U26 

- 3344712u27 + 669438.;u28 , 

Lg = 4U19 + 198u20 + 2016u21 + 10300u22 + 41352u23 + 55536u24 - 989076u25 - 6007194u26 

+ 46866408u27 - 122039509u28 + 166096620u29 
- 127471458u30 + 52501710031 - 9066913tu32 , 

L9 = 24u21 + 692u22 + 5816u23 + 30714u24 + 99648u25 + 226692u26 

- 887688u27 
- 13103579u28 - 24522136u29 + 514861877iu30 - 1874111776u31 

+ 3435605052u32 - 3684304933iuS3 + 2353070344u34 - 833603008u35 + 126632261ju36. 
APPENDIX IV. EXPANSIONS FOR In A AND l(u) 

Diamond 
leu) = 1 - 2u2 

- 8us 
- 26u4 

- 80us - 268u6 - 944u7 
- 3474u8 

- 13072u9 
- 49672u10 - 191272ull - 744500u12 + 

In A = u 2 + 2u3 + 3!u4 + 6u
s + 12iu

6 + 30u7 + 83lus + 250itl 

+ 768!u
10 + 2442u

ll + 8009tu12 + 
Simple Cubic 

leu) = 1 - 2us 
- 12us + 14u6 

- 90u7 + 192u8 
- 792u9 + 2148u10 - 7710011 + 23262u12 - 79512u13 

+ 252054u14 - 846628u1S + 2753520U16 - 9205800u17 + 30371124u1s + 
In A = US + 3us 

- 3!uG + 15u7 
- 33u8 + 104iu9 

- 280tulO + 849ull 
- 246I!u12 + 7485u13 

- 22534tu14 + 69393-~U15 - 213754!u16 + 666750u17 - 2086734tu18 + 
Body-Centered Cubic 

leu) = I - 2u4 
- 16u7 + 18u8 - 168u10 + 384ull 

- 314u12 
- 1632u13 + 6264u14 

- 9744ulS 
- lO014u16 

+ 86970017 
- 205344u18 + 80176u19 + lO09338u20 

- 3579568u21 + 4575296u22 + 8301024u23 + ... , 
In A = u 4 + 4u7 

- 4!uS + 28u10 
- 64u

ll + 48tu12 + 204u13 - 786u14 + 1164u15 + 922lu16 

- 8760U17 + 20032u18 - 9164u19 
- 84215gu20 + 294677tu21 

- 378990022 
- 569704u23 + ... 

Face-Centered Cubic 
leu) = 1 - 2u6 

- 24ull + 20012 
- 48u15 - 252u16 + 720u17 - 438u18 

- 192u19 
- 984u20 - 1008u21 

+ 12924u22 
- 19536u23 + 3062u24 - 8280u25 + 26694u26 + 153536u27 - 507948u28 + 

In A = US + 6ul1 
- 6tu12 + 8u1S + 42u16 

- 120u17 + 72iu18 + 24u19 + 123u20 + 126u21 

- 1623u22 + 2418u23 - 495tu24 + 822u25 - 2703u26 
- 15512u27 + 50538u28 + 
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APPENDIX V. ANTIFERROMAGNETIC EXPANSIONS FOR In Aa AND THE LOW-TEMPERATURE 
SUSCEPTIBILITY 

Honeycomb 

2 In A" = y3(81) + y\3) + y5(381) + y6(10 + !82) + y7(1281) + y8(43t + 682) + y9(6881 + 1!8a) 

+ y10(252 + 55!82) + yll(47181 + 248a) + y12(1762 + 50782 + 4t8.) + y13(369601 + 32103) + ... t 

Xa(y) = 4y3 + 12y5 + 8y6 + 48y7 + 96y8 + 320y9 + 888ylO + 2748yll + 8384y12 + 26340y13 + 
Simple Quadratic 

2 In A" = y4(01) + y6(4) + y8( -2 + 601 - t02) + yl°(32 - 801 + 402) 

+ y12( -54 + 7501 - 1202 + H8a) + yH(428 - 17681 + 10082 - 883) 

+ y16( -1095 + 128481 - 32482 + 8083 - 2iOJ 
+ yIS(7469! - 383681 + 238802 - 36483 + 368.) + ... , 

x·(y) = 4y· + 16y8 + 32ylO + 156yl2 + 608y14 + 2688y16 + 12064yl8 + .... 
Diamond 

2 In A4 = y·(OI) + y6(4) + y8(_4 + 601 - !(2) + yl°(36 - 1601 + 4(2) 

+ y12( -130 + 10001 - 2482 + HOa) + y14(716 - 47281 + 16002 - 1683) 

+ ylS( -3528 + 265601 - 95402 + 1508a - 4tO.) + yI8(19365! - 1432881 + 598402 - 116483 + 760.) 

+ y20( -105198 + 8186681 - 3633002 + 867583 - 8608. + 16185) 

+ y22(595860 - 46718801 + 22504882 - 6117683 + 81848. - 3568s) 

+ y24( -340221O! + 273530481 - 138598082 + 42490083 - 699280. + 488285 - 63j8s) + ... , 
x4 (y) = 4y· + 16y8 + 64y12 + 96yH + 4R8yl6 + 1392y18 + 5064y20 + 17856y22 + 65576y24 + .... 

Simple Cubic 

2 In A" = yS(OI) + yIO(6) + y12( -6 - t (2) + y14(1501) + y1S(6 - 36(1) 

+ y18(126 + 2181 + 2082 + t83) + y20( -477 + 4881 - 9082) 

+ y22(594 + 41181 + 12602 + 15(3) + y2\445 - 267681 + 11282 - 12003 - iO.) 
+ y26(2034 + 559581 + 55202 + 31583 + 684) + y2Se -27306 - 69681 - 8095!02 - 900.) 

+ y3°(84120 + 25601 + 2674002 - 8403 + 4208. + 1105) 

+ y32( -74361 - 13759281 - 2434282 - 1418483 - 4208. - 3685) 

+ y34(-50160 + 63926701 - 2235682 + 7578003 - 11760. + 31505) 

+ y36( -1007677 - 105639601 - 374891 t82 - 13716803 - 136500. - 78485 - 6i06) + .... 
xa(y) = 4ys _ 8yl2 + 60y14 _ 144y16 + 416yl8 - 1248y20 + 4200y22 - 13248y24 

+ 42936y 26 - 138072y28 + 452840yao - 1480944y 32 + 4883688y34 - 16114784y 36 + .... 

Body-Centered Cubic 

2~In A4 = yS(OI) + y14(8) + y16( -8 - !8a) + y2°(2881) + y22( -64(1) + y24(24 + 3681 + lOa) 

+ y26(296 + 5602) + y2S( -1148 + 1281 - 22482) + y3°(1320 + 21601 + 28882) 

+ y32( -444 + 119201 - 11782 + 7083 - 18.) + y34(432 - 862401 + 9602 - 4480a) 

+ y36(3224 + 1665681 + 75682 + 100883) + y38(4456 - 1254401 + 203202 - 93603 + 568.) 

+ y.O( -112700 + 794881 - 3588482 + 63083 - 56084 + 185) 

+ y42(332602j + 1646481 + 10872082 + 117603 + 20160.) 

+ y44( -402840 - 3582481 - 13864402 + 14003 - 327684 + 2885) 

+ y46(295488 - 73316881 + 10677682 - 9363283 + 302484 - 44885) + .... 
x 4 (y) = 4ys _ 8ylS + 112y20 _ 256y22 + 156y24 + 896y26 _ 3536y28 + 5472y30 + 5400y32 - 49088y34 

+ 115008y36 - 47776y38 - 555492y 40 + 1976736y42 - 2563424yH - 4446272y46 + .... 
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Special Class of Feynman Integrals in Two-Dimensional Space-Time* 

G. IaLLENt AND J. TOLLt 

Department of Physics and Astronomy, University of Maryland, College Park, Maryland 
(Received 26 May 1964) 

Contributions of Feynman diagrams consisting of a single loop with an arbitrary number of vertices 
are explicitly evaluated in two-dimensional space-time. The result can be written as a sum of loga­
rithms mUltiplied by algebraic expressions. Each logarithm is characteristic of a simple diagram of 
one loop with two external lines, while the coefficients can be obtained from rules analogous to the 
rules of residue calculus. 

1. INTRODUCTION 

ONE of the most useful calculational techniques 
in quantized field theory is the use of Feynman 

diagrams. Even if standard methods for the evalua­
tion of such diagrams have been developed, mainly 
the introduction of so-called Feynman auxiliary 
variables of integration, no general method exists 
which allows one to calculate in detail and with 
ease the contribution from a given diagram with a 
large number of lines. The standard method gives 
rise to rather extensive integrations also in com­
paratively simple cases. In this paper we are going 
to study diagrams consisting of a single loop but 
with an arbitrary number of external lines. As is 
well known, such a diagram gives rise to an inte­
gral of the following form 

(1) 

(Ia) 

Here, the differences of the vectors Pi (j = 0, 1, .. " n) 
are the external energy momentum vectors of the 
diagram and the a; denote the squares of the masses 
of the particles corresponding to the internal lines 
of the polygon. We are interested in the function 
F(Z;k, ak) considered as an analytic function of the 
squares Z;k of all the differences of the vectors Pk 
and as a function of the internal masses ak. The 
latter quantities may be real or complex. In general, 
this analytic function has a complicated Riemann 
surface with many branch points. We define the 
principal (or physical) sheet of the Riemann surface 
as the sheet obtained when all vectors and masses 

* Assisted in part by the U. S. Air Force Office of Scientific 
Research through contract AFOSR 500-74 and the National 
Science Foundation through grant GP 1193. 

t On leave of absence from Department of Theoretical 
Physics, University of Lund, Lund, Sweden. 

t Part of this work was done when both the authors 
were guests of Institut des Hautes Etudes Scientifiques, 
Paris. The support of this institute and its director, L. 
Motchane, is gratefully acknowledged. 

in Eq. (1) are real and the singularities in the inte­
grand are interpreted with the aid of the con­
ventional iE indicated explicitly in Eq. (1) and 
corresponding to the usual time-ordered product. 
The integral is supposed to be evaluated for this 
case and the result analytically continued from 
there. 

The standard technique for the evaluation of 
(1) is to use the identityl 

(AoAl '" An)-l = n! { ... { (f'+la 

X 0(1 - L ak)( L Akakr"-l, (2) 

to write the integral in Eq. (1) as follows 

F(Z;k, ak) = n! J ... J (f'+la 0(1 - L ak) J ;;n~l' 
(3) 

D = q2 - 2 L qpkak + L (p! + ak)ak - iE. (3a) 

A simple translation of the variable of integration 
q allows us to write the expression (3) in the form 

F(Zikl ak) = n! J ... J dn+1a 

X 0(1 - L ak) J (q2 + :~ ie),,+l , (4) 

A L (P! + ak)ak - (L Pkak)2 

L (Pi - Pk)2aiak + L akak 
;<k 

(4a) 

The integration over the vector q can now be per­
formed. If we assume that we are working in a 
space with one time dimension and m - 1 space 
dimensions (an m-dimensional Lorentz space) we 
find 

1 R. P. Feynman, Phys. Rev. 76, 785 (1949). 
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n + 1 - tm > 0, (5) 

c!m) = illj "'r(n + 1 - tm). (5a) 

If the value of n is not larger than tm 1, the 
integral diverges and the function F(Z;k, ak) is not 
well defined. In the opposite case we get by com­
bining Eqs. (4) and (5) 

F(Z;k' ak) = c!m) J ... J d"+1a 

X 15(1 - E ak)A -n-1+!m. (6) 

This is the standard expression for the function F. 
The explicit evaluation of this quantity requires 
that all the integrations over ak are performed. 
This is a time-consuming task especially if n is large. 

In the particular case n + 1 = m = 2 we find 
directly from Eq. (6) 

i7r 
= R-r log X 12 , (7) 

12 

R12 == :\(ZI2' all az) = (Z12 - al - az)2 - 4a1a2, (7a) 

X _ Zl2 - al - a2 - R~2 
12 - Z12 - a

l 
- az + Ri2 (7b) 

This function is so important in what follows that 
we introduce a special notation for it and denote 
it by Ll2 :;; L(Z12l all az). It is the simplest possible 
case of a function obtainable from a Feynman 
diagram and corresponds to a diagram with two 
external lines and a simple /I bubble" of internal 
lines between the two vertices. 

The integral in Eq. (7) is supposed to be evalu­
ated, e.g., for Z12 negative and real and the quanti­
ties a1 and a2 positive and real. In that case the 
denominator never vanishes in the interval of 
integration and -iL12 is a positive real number. 
Consequently, the logarithm is to be taken on its 
principal sheet for this case. The square root is, 
e.g., defined to have a positive real part. This 
definition makes the number X l2 real and larger 
than one for the case just considered. The function 
LI2 is defined for other values of Z12 or/and al and 
a2 by analytic continuation from the domain just 
mentioned. As an example we mention that when 
at and az are positive and real, the representation 

L(z, a, b) = 2i7r f'" [A( du b)J*~' (8) 
M' U, a, U Z 

(8a) 

explicitly shows that L12 is an analytic function of 
Z regular in the whole complex plane except for a 
cut along the positive real axis above M2. 

The main result to be proved below is that every 
function of the type indicated in Eq. (1) and with 
m = 2 can be written as a sum of terms Li; defined 
in Eq. (7) with coefficients which can be written 
down by inspection. The practical usefulness of the 
result is presumably not very great as diagrams in 
two-dimensional space-time are not of immediate 
physical interest. However, field theories in two­
dimensional space time are occasionally used as 
models because of the simplifications obtained 
when the dimensionality of space is decreased2 and 
our result may be of interest in such cases. Actually, 
the result presented here was found during an 
investigation of the analytic properties of certain 
perturbation theory three-point functions. In this 
case it can be shown that it is enough to study the 
diagram in question in two-dimensional Lorentz 
space, so these reduction formulas proved quite 
useful in problems of actual physical interest. 
There are also indications that generalizations of 
our result to higher dimensions are possible even 
if the formulas become more complicated when the 
number of dimensions is increased.3 

2. A SPECIAL INTEGRATION TECHNIQUE IN 
TWO-DIMENSIONAL SPACE-TIME 

An explicit evaluation of the a integrals in Eq. 
(6) is time consuming for large values of n even 
in the case m = 2. In principle, it also appears to 
be a somewhat round-about way to evaluate the 
two-dimensional integral in Eq. (1) in terms of 
the n-dimensional integral in Eq. (6). The purpose 
of the representation (2), when originally introduced, 
was to diminish the number of integrations and 
not to increase them. This goal is not achieved unless 
we also have n < m. In this section we want to 
develop another technique for the evaluation of 
the integral (1) taking explicit advantage of the 
simplifications obtained for m = 2. For this purpose 
we introduce "light cone coordinates" q., ql for 

t Compare from, e.g., W. E. Thirring, Ann. Phys. (N.Y.) 
3, 91 (1958). 

3 We mention in this connection the papers by F. R. 
Halpern, Phys. Rev. Letters 10, 310 (1963) and L. M. 
Brown, Nuovo Cimento 22, 178 (1961). Brown indicates 
how the general diagram of one loop with n vertices (n 2:: 6) 
can be reduced in principal to the "pentagon" with five 
vertices; Halpern then shows how to reduce the "pentagon" 
to a "square" with four vertices. However, it is not known 
whether the generalization to higher dimensions of the 
formula for the coefficients in the two-dimensional case given 
in Eq. (25) below is sufficiently simple to be useful. 



                                                                                                                                    

FEYNMAN INTEGRALS IN SPACE-TIME 301 

the vector q by the definition 

q. = qo + q,., (9a) 

(9b) 

and analogous definitions for all other vectors. In 
terms of these variables we have, e.g., 

q2 = _ q.q" (lOa) 

dq = dqodq% = tdq.dq,. (lOb) 

2pq = -(P.q, + p,q.). (JOe) 

Further, the integral (1) can now be written as 
follows 

1 if dq. dq, (11) 
= "2 n [ak - (q. - Pk,.)(q, - Pk,') - it]" 

Concentrating our attention, e.g., on the integra­
tion over q. we note that the integrand is an analytic 
function of q. with simple poles at the points 

q; = Pi,. + (a i - it)/(q, - Pi,,); j = 0, 1, .,. ,n. 
(12) 

For n 2:: 1 the integrand vanishes at infinity so 
rapidly that the contribution to the integral from 
a large circle vanishes in the limit when the radius 
of the circle goes to infinity. Closing the path of 
integration in the lower half-plane, we can write 
the function F in Eq. (11) as a sum of residues 
as follows 

F(Zikl ak ) = i1r E f dq,(q, - Vt.t)"-l , 
x O(q, - Vi,.)Di\ (13) 

D; = II [(a; - ie)(Pk,t - q,) - (ak - ie)(pi,1 - q,) 
k¢j 

- (PL, - Pk,.)(q, - Pi,,)(q, - Pk,,)], (13a) 

An immediate consequence of the result (13) is 
that the whole function F(Z;k, ak) can be written 
as a sum of terms each of which is not more compli­
cated than a logarithm. This fact is not evident 
from the representation (6). 

The algebraic structure of the result (13) appears 
to be rather complicated, especially as we have to 
make a partial fractions expansion in terms of 
the variable ql to perform the remaining inte­
grations. However, the main contribution to the 
partial fractions expansion just mentioned comes 
from the product of all factors except one in (13a) 
evaluated at a value of q, which makes the re­
maining factor equal to zero. Each factor in (13a) 

is given by one of the original denominators in (1) 
multiplied by q, - Viol and should be evaluated 
at a value of q. which makes the jth denominator 
in (1) vanish. Further, each factor in (13a) is of 
the second order in q, and it follows that there 
are two values of the vector q which make two of 
the original denominators in (1) equal to zero at 
the same time. Let us denote the two vectors q 
which makes the kth and jth denominators in 
the original integrand simultaneously equal to zero 
by q:~); cr = 1, 2. Using this notation we can write 
the partial fractions expansion of (13) in the follow­
ing form 

F(Zik> ak) = i1r L dq, L L Aj:l[(Pk,. - Pi,.) 
i k:y4i q 

Noting that the same coefficient Ai;) appears twice 
in the sum in Eq. (14) we can collect the terms in 
this expression in the following way 

F(Zik' ak) i1r L: L A;~)f,(~) , (15) 
i<k 0' . 

f (~) } d (P )-I( Ca) (a'»-1 Ik = qt k,. - PL, qik,l - qlk,t 

X (qt - q;~~,)-l[O(ql - Pi,t) - O(q, - Pk,.)]. (lSa) 

The domain of integration in Eq. (lSa) is effectively 
a finite piece of the real axis and one finds 

(~) -1 (,,) (.') -1 Pk,t - q;::. 11k = (Pk,. - Pi,.) (qlk,t - qjk,t) log ( .. ) . 
Pi,' - qlk,' 

(16) 

Equations (15) and (16) give, in principle, a com­
plete answer for the Feynman integral (1) in two 
space-time dimensions. 

3. ALGEBRAIC SIMPLIFICATIONS OF THE RESULT 

The formulas obtained in the previous section 
appear somewhat forbidding. However, the general 
structure is not too complicated and easily seen 
though once the significance of the vectors q;:) 
is realized. For an explicit evaluation of both the 
expressions Ai:) in Eq. (14a) and f;;) in Eq. (16) it 
is desirable to have formulas for the vectors q;Z). 
To achieve this we have to solve the equations 

(q - Pi)2 + aj = 0, 

(q - Pk)2 + ak = O. 

(17a) 

C17b) 

Let us denote the vector q - Pi by Q for a moment. 
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The two Eqs. (17) then take the form 

Q2 + ai = 0, 

2QPik - ai + P;k + ak = 0, 

(18a) 

(18b) 

(18c) 

Consequently, the vector Q has a given length 
and a given projection on the vector Pik' In two­
dimensional space-time there are just two such 
vectors viz. 

Q = (2p;k)-1[(P;k + ak - ai)Pki ±fik;(A( -p;;,a;, ak»l] 

= 21 [(Z;k + ai - ak)Pki ± fikiR'k]' (19) 
Zik 

The vector Pik in Eq. (19) is a vector orthogonal 
to Pik' To be precise, we can define 

P = (p%, Po), 

P = (Po, P%), 
,2 2 
P = -p. 

(20a) 

(20b) 

(20c) 

Substituting back in the equations above, we find 
that the vector q in Eq. (17) is given by 

q;:) = -2
1 [Pi + Pk + ai - ak (Pk - Pi) 

Zjk 

( " ,,)R'kJ ± Pk - Pi - . 
Zjk 

(21) 

The conventions we have introduced in Eq. (15) 
are such that q~~) is symmetric in j and k. We can 
make this prescription precise by defining the sign 
in Eq. (21) to be +1 for (1' = 1 and j < k. In this 
way we find 

(Pk,. - Pi,.)(qi~~t - q;;::) = (-IYR~k; j < k, (22a) 

Pk,l - qi:~, = -1 z. _ a-a. _ (-I)#R1 ]. 
Iv) 2. [,k k, ,k , 

Pi,' - qik,l a, 

j < k. (22b) 

Equations (22) allow us to simplify Eq. (16) in the 
following way 

f
(u> ( - It Zjk - ak - ai - (-I)"R~k 
ik = -or- log . R il• -2a; 

(23) 

The expression given in Eq. (15) can now be further 
simplified by noting that the coefficients in the 
partial fractions expansion (14) must fulfil the 
sum rule 

( -1)" :E :E -or- Ai;> = 0 for all j. (24) 
k a Rik 

Equation (24) allows us to write Eq. (15) in the 

following remarkably simple form 

i1T' " [AO) A(2)] 1 F(Zik. ak) = -2 4.J ik + ik RDt 
i<k ik 

= :E teA;!) + A;!»Lik . (25) 
i<k 

4. GENERALIZATION TO MULTINOMIAL 
NUMERATORS 

In many problems, such as those involving 
particles with nonzero spin, integrals more general 
than F in Eq. (1) appear. They are of the form 

J dqN(p, q) ) 
F(Z;kl ak) = nZ=o [(q _ Pk)2 + ak _ iE]' (26 

where the new factor N is any multinomial of the 
components of the p/s and q, such that the inte­
gral is still convergent. We now want to show that 
also in this case one obtains a result in the form 
of Eq. (25) where the Ai:) now include the factor 
N(p, qi~». 

The proof of this result could be made by the 
integration technique of Sec. 2, but we find it easier 
to use another approach and to proceed by induc­
tion. Let us assume that the proof has been done 
for all multinomials of a given degree in the com­
ponents of q and for all n. An additional factor 
q can be introduced into the numerator by insert­
ing another factor (b2j2)[(q - Q)2 + b - iErl in 
the integrand, differentiating with respect to Q, 
and then taking the limit when b ~ 00 and Q ~ O. 
The result is 

J dqN(p, q)q - F 

n [( )2 + _.] - Fl + 2, q - Pk ak '/.E 

where 

1 " " A (u) (u)L = '2 4.J 4.J ik qik ik' 
i<1I: (f 

and 

(27) 

(27a) 

Ai;) = N(p, q;:» II [(q;~) - pz)2 + atl-1. (27b) 
I"i ,k 

The second term in Eq. (27) is given by 

F - 1 I' ,," b
2
N(p, q~U») 

2 - 'i 1m v Q 4.J II [( (u) )2 + ] 
b_'" k i"k qk - Pi ai 
Q-O 

(28a) 
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where q!v) for (T = 1, 2 are the two solutions of 

(q!V) _ Q)2 + b = 0, 
(28b) 

(q!v) _ Pk)2 + ak = O. 

We note from Eq. (27a) that Fl is the desired 
result for the numerator N(p, q)q needed for the 
induction proof. Therefore, we must only show 
that F2 vanishes. From Eqs. (28b) , using the solu­
tion (21), we find that each component of both of 
the vectors qiV) as well as the (q!V»)2, are of the 
first order in b when b ~ CX). An elementary esti­
mate then shows that, if the integral in Eq. (27) 
is convergent, the term F2 vanishes at least as 
rapidly as b-1 log b. This completes the proof. 

5. DISCUSSION 

The result just obtained can be summarized in 
the following way. 

The contribution of the Feynman diagram (1) 
or (26) in two-dimensional space-time can be 
written as a sum of terms where each term is 0 b­
tained by applying rules: 

(i) Pick out all possible pairs of denominators 
(q - pj)2 + aj and (q - Pk)2 + ak in (1) and find 
the two vectors q;;) which make both these de­
nominators equal to zero. An explicit formula for 
these vectors is given by Eq. (21). 

(ii) Substitute q;~) in all of the remaining factors 
in (1) or (26). This quantity is denoted by A;;). 

(iii) Take the average of A;~) for the two possi­
ble values of (T. 

(iv) Multiply by the function L jk defined in 
Eqs. (7) and (8) and corresponding to a simple 
"bubble" with pj - Pk as external vector. 

(v) Sum over all j < k. 
In passing, we mention that a special case of Eq. 
(25) with n = 3 and corresponding to a "triangle" 
diagram has been noticed before." 

The possibility of generalizing our result to 
higher dimensions has already been mentioned.3 

Another generalization to be investigated is con­
cerned with diagrams in two-dimensional space­
time but of more complicated structure involving 
two or more closed loops. Even if we have no 
definite results to report for such cases we want to 
remark that the result (25) together with the repre:.. 
sentation (8) for the functions Lij may be useful 
also in such cases. By performing one of the inte­
grations with the aid of (25) and representing all 
the logarithms in the form (8) one brings the 
function in a shape where the second integration 
can again be performed with the aid of (25). Pro­
ceeding in this way it is possible to write the func­
tion of such a Feynman diagram in terms of a 
I'-fold integral, where I' is the number of closed 
loops in the diagram and not the number of internal 
lines. In certain cases, this might be a convenient 
intermediate step in the evaluation of the integral. 

4 G. Kiillen, A. Wightman, Dan. Mat. Fys. Skr. 1, No.6 
(1958). Cf. also Ref. 3. 
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Luttinger's exactly soluble model of a one-dimensional many-fermion system is discussed. We 
show that he did not solve his model properly because of the paradoxical fact that the density oper­
ator commutators [p(p), p( - pi )], which always vanish for any finite number of particles, no longer 
vanish in the field-theoretic limit of a filled Dirac sea. In fact the operators p(p) define a boson field 
which is ipso facto associated with the Fermi-Dirac field. We then use this observation to solve the 
model, and obtain the exact (and now nontrivial) spectrum, free energy, and dielectric constant. This 
we also extend to more realistic interactions in an Appendix. We calculate the Fermi surface param­
eter iik, and find: anklak!kp = 00 (i.e., there exists a sharp Fermi surface) only in the case of a suffi­
ciently weak interaction. 

I. INTRODUCTION 

T HE search for a soluble but realistic model in 
the many-electron problem has been just about 

as unfruitful as the historic quest for the philoso­
pher's stone, but has equally resulted in valuable 
bypro ducts. For example, 15 years ago Tomonaga1 

published a theory of interacting fermions which was 
soluble only in one dimension with the provision 
that certain truncations and approximations were 
introduced into his operators. Nevertheless he had 
success in showing approximate boson-like behavior 
of certain collective excitations, which he identified 
as "phonons." (Today we would denote these as 
"plasmons," following the work of Bohm and Pines.2

) 

Lately, Luttingel has revived interest in the subject 
by publishing a variant model of spinless and mass­
less one-dimensional interacting fermions, which 
demonstrated a singularity at the Fermi surface, 
compatible with the results of the modern many­
body perturbation theory.4 

Unfortunately, in calculating the energies and 
wavefunctions of his model Hamiltonian, Luttinger 
fell prey to a subtle paradox inherent in quantum 
field theory5 and therefore did not achieve a correct 

* Research supported by the U. S. Air Force Office of 
Scientific Research. 

1 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 5, 544 
(1950). 

2 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
3 J. M. Luttinger, J. Math. Phy~. 4, 1154 (1963). Note 

that we set his Vo = 1, thereby fixmg the umt of energy. 
References to this paper will be frequent, and will be denoted 
by L (72) for example, signifying his Eq. (72). 

4 J. M: Luttinger and J. C. Ward, Phys. Rev. 118, 1417 
(1960). . L (8) h' h 

6 Luttinger made a transform~tlOn, , w 1C was 
canonical in appearance only. But ~n the language of G .. Bar­
ton [Introduction to Advanced Fteld Theory, (IntersClence 

solution of the problem he himself had posed. In the 
present paper we shall give the solution to his inter­
esting problem and calculate the free energy. We 
shall show the existence of collective plasmon modes, 
and shall calculate the singularity at the Fermi 
surface (which may in fact disappear if the inter­
action is strong enough), the energy of the plasmons, 
and the (nontrivial) dielectric constant of the system. 
In an Appendix we shall show how the model may be 
generalized in such a maIUler as to remove certain 
restrictions on the interactions which Luttinger had 
found necessary to impose. 

It is fortunate that solid-state and many-body 
theorists have so far been spared the plagues of 
quantum field theory. Second quantization has been 
often just a convenient bookkeeping arrangement 
to save us from writing out large determinantal 
wavefunctions. However there is a difference be­
tween very large determinants and infinitely large 
ones; we shall show that one of the important dif­
ferences is the failure of certain commutators to vanish 
in the field-theoretic limit when common sense and 
experience based on finite N tells us they should 
vanish! (Here N refers to the number of particles 
in the field.) 

Publishers, Inc., New York, 1963), pp. 126 et seq.] this 
transformation connected two "unitarily inequivalent" Hil­
bert spaces, which has as a consequence that commutators, 
among other operators, must be reworked so as to be well­
ordered in fermion field operators. It was first observed by 
Julian Schwinger [phys. Rev. Letters 3, 296 (1959)] that the 
very fact that one postulates the existence of a ground state 
(i.e., the filled Fermi sea) forces certain commutators to be 
nonvanishing even though in first quantization they auto­
m:J.tically vanish. The "paradoxical contradictions" of which 
Schwinger speaks seem to anticipate the difficulties in the 
Luttinger model. 
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We shall show that these non vanishing com­
mutators define boson fields which must ipso facto 
always be associated with a Fermi-Dirac field, and 
we shall use the ensuing commutation relations to 
solve Luttinger's model exactly. Because this model 
is soluble both in the Hilbert space of finite Nand 
also in the Hilbert space N = 0), with different 
physical behavior in each, we believe it has applica­
tions to the theory of fields which go beyond the 
study of the many-electron problem. The model can 
be extended to the case of electrons with spin. This 
has interesting consequ~nces in the band theory of 
ferromagnetism, as will be discussed in some detail 
in an article under preparation.5a 

n. MODEL HAMILTONIAN 

We recall Luttinger's HamiltonianS and recapitu­
late some of his results: 

H = Ho + H', 

where the "unperturbed" part is 

Ho = 1L dx 1//(X)uaPy,,(X) 

= I: (a,talk - a2ta2k)k, 
k 

and the interaction is 
L 

H' = 2X II dx dy y"~(x)y,,,(x) 
o 

(2.1) 

(2.2a) 

(2.2b) 

(2.3a) 

x atk,alk.a:k.a2k.' (2.3b) 

Here y" is a two-component field and the form (b) 
of the operator is obtained from (a) by setting 

y" = ~ I: eikz(a1k
) 

VL k a2k 
and 

So, the canonical transformation 

(2.6) 

gave the result that 
(2.7) 

and consequently that the spectrum of H = Ho + H' 
was the same as that of H 0, independent of the inter­
action vex - y). This can be explicitly verified for 
his choice of 

L 

So = Jf dx dy y";(x)y,,l(x)E(x - y)y,,~(y)y,,2(Y)' (2.8) 
o 

where B(x), not to be confused with the energy B, is 
defined by: 

aE(x - y)/iJx == Vex - y), (2.9) 

assuming that 

IlL iT == L 0 Vex) dx = O. (2.10) 

In the Appendix we shall show among other things 
how to generalize to V F O. It is also simple and 
instructive to verify Eqs. (2.6) and (2.7) somewhat 
differently by using the first quantization, 

N iJ M a 
Ho = -i I:-+ i I:- (2.11) 

,,-1 ax" m-1 ay", 
and 

N M 

H' = 2X :E :E V(x" - Ym), (2.12) 
'Po""'1 ",=-1 

where Nand M are, respectively, the total number 
of" I" particles and "2" particles, with coordinates 
x" and y"., respectively. The properly antisym­
metrized wavefunctions are given by 

'lr = det leik'~j I det le'OlYi I 

X exp {~It iB(x" - Ym)}. (2.13) 

Using Eqs. (2.9) and (2.10), 'lr is readily seen to obey 
Schrodinger's equation 

H'lr = E'lr (2.14) 
./,+ 1 ~ -ikX( * *) 
'Y = _ /T £.... e alk, a2k , 

VLk 
(2.4) with just the unperturbed eigenvalue 

with aik's defined to be anticommuting fermion 
operators which obey the usual relations 

(2.5) 
{at.kt at·k·l = 0, and {a;k. at'k' I = OWOkk" 

Luttinger noted that for an appropriate operator 

•• D. Mattis, Physics 1, 184 (1964). 

N M 

E = :E kn - :E q ... (2.15) 
11-=1 m=l 

The wavenumbers are of the form 

ki or qj = 211" integer/L, (2.16) 

as required for periodic boundary conditions. This is 
in exact agreement with the results of Ref. 3, and 
can also be checked in perturbation theory; first.,. 
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order perturbation theory also gives vanishing re­
sults, and indeed, it is easy to verify that to every 
order in X the cancellation is complete, in accordance 
with the exact result given above. 

Up to this point, Luttinger's analysis (which we 
have briefly summarized) is perfectly correct. It is 
the next step that leads to difficulty. The Hamil­
tonian discussed so far has no ground-state energy; 
in order to remove this obstacle, and thereby es­
tablish contact with a real electron gas, Luttinger 
proposed modifying the model by 1I filling the infinite 
sea" of negative energy levels (i.e., all states with 
kl < and q2 > 0). Following L(8) we define b's and 
c's obeying the usual anticommutators, such that 

and 
{

bk k;::: 0 

au = c* k k < 0, 

a
2

k = {bk k < 0 
ct k 2: O. 

(2.17) 

Using this notation the total particle-number 
operator becomes 

m. = L: b~bk - C;Ck (2.17a) 
all k 

(Le., the number of particles minus the number of 
holes). 

Since the Hamiltonian commutes with m. we can 
demand that m. have eigenvalue No. In the non­
interacting ground state there are no holes and the 
b particles are filled from -kF to kF where kF = 
7r(No/L) = 7rp. The noninteracting ground-state 
energy is N o7rp + energy of the filled sea (W). 

The kinetic energy assumes the form 

Ho = L: (btbk + ctCk) Ikl + W, (2.18) 
allk 

where 
w = (L: k - L: k) (2.18a) 

k<O k;>O 

is the infinite energy of the filled sea, an uninteresting 
c number which we drop henceforth in accordance 
with Luttinger's prescription. The interaction [H', 
Eq. (2.3) and the operator So, Eq. (2.8)] can also be 
expressed in the new language by means of the 
substitution (2.17). The reader will no doubt be 
surprised, as indeed we were, to fi~d that now with 
the new operators, Eq. (2.7), with H defined in (2.6), 
is no longer obeyed. 

Upon further reflection one sees that this must 
be so, on the basis of very general arguments. In the 
new Hilbert space defined by the transformation to 
the particle-hole language (2.17), H is no longer 
unbounded from below and now has a ground state. 

A general and inescapable concavity theorem states 
that if Eo(X) is the ground-state energy in the pres­
ence of interactions, (2.3), then 

(2.19) 

This inequality is incompatible with the previous 
result, viz. all E = independent of X, which was 
possible only in the strange case of a system without 
a ground state. 

The same thing can be seen more trivially using 
second-order perturbation theory (first-order per­
turbation theory vanishes): It is easily seen that 

Eci2
) = _ (~ ) 

2 f: Iv~£ 12 nl (k)n2 ( - k), (2.20) 

where niCk) and nz(k) are the number of ways of 
shifting a particle of type "1" and type "2" respec­
tively by an amount k to an unoccupied state. A 
simple geometric exercise will convince the reader 
of the following facts: (1) if we start with a state 
having a finite number of particles, then nl and n2 

are always even functions of k (i.e., there are just as 
many ways to increase the momentum by k as to 
decrease it by the same amount.) (2) If we start 
with a filled infinite sea then there is no way to 
decrease the momentum of the Ill" particles nor to 
increase the momentum of "2" particles. Hence 
for this second case n 1 (k)n2 ( -k) is nonzero only for 
k > O. Thus Eci2

) vanishes for a state with a finite 
number of particles, but it is negative for a filled sea. 

If the reader is unconvinced by perturbation 
theory, then he can easily prove that Eo is lowered 
by doing a variational calculation. 

What has gone wrong? We turn to some algebra 
to resolve this paradox, and following this, present a 
solution of the field-theoretic problem defined by 
Ho + H' in the representation of b's and c's. 

m. CASE OF THE FILLED DIRAC SEA 

The various relevant operators are given below; 
the form (a) of each equation will not be used in the 
bulk of the paper, and is just given here for complete­
ness. In the following equations, p > o. 

(3.Ia) 

L: Ck+pot + :E bt+pot + :E bt+"bk , 
k<-p -p.s;k<O k2:0 

(3.Ib) 

PI( -p) == L: atkal k+p (3.2a) 
k 

L: CkCt+p + L Ckbk+p + L: btbk+p, 
k<-p -p;Sk<O k2:0 

(3.2b) 
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(3.3a) 

(3.3b) 

P2( -p) == L a~ka2 H" (3.4a) 
k 

(3.4b) 

Equations (3.1a)-(3.4a) give the density operators 
in the original representation, so let us calculate in 
this language a commutator such as (assume p ;::: 
p' ;::: 0 for definiteness) 

[Pt(-p), Pt(p')J = L [arkatHp, ark,+",atk'] 
k .k' 

+~ +00 

= 1: arkat Hp-,,' - L ark+",a, HI' = O. (3.5) 
k--oo k __ c:o 

The zero result could have been expected by writing 
the operators in first quantization: 

PI( -p) = L e- i
"" and P2(P) = 1: e'''y,., (3.6) 

n m 

whence they evidently commute. Nevertheless, the 
zero result is achieved in (3.5) only through the 
ahnost "accidental" cancellation of two operators, 
each of which may diverge in the field-theory limit 
when N = 00. We now show that in that limit the 
operators in fact no longer cancel, by evaluating the 
commutator using form (b) for the density operators. 
It is a matter of only some minor manipulation to 
obtain the important new result: 

[PI(-P), Pt(P')] = [P2(P), P2(-P')] 

= 5".", L 1 = P2L 5"."" (p' > 0). (3.7a) 
-v<k<O 7r 

In addition, 

(3.Th) 

A quick check lS provided by evaluating the vacuum 
expectation value 

(01 [PI( -p), PI(P)] 10) 

L (01 (hbH"bt'+pck:l! 10) = pL/211' , (3.8) 
-p<k,k'<O 

which is (xactly what is expected on the basis of the 
previous equation. Evidently the form (b) of the 
operators (211'/pL)+!p,( +p) and (211'/pL)+tp2 ( -p) 
have properties of boson raising operators [call them 
A*(p) and B*( -p)] and (211'/pL)+tp1 ( -p) and 
(211'/ pL) +t P2 ( + P ) have properties of boson lowering 
operators [A(p) and B( -p)], i.e., 

[A, B] = [A *, B] = 0, 
(3.9) 

[A(P), A*(P')] = [B(-p),B*(-p)] = 5".",. 

The B field is the continuation of the A field to nega­
tive p; therefore together they form a single boson 
field defined for all p. 

The relationship of the p(p)'s to Luttinger's 
N(x)'s, L(25), is obtained by using (2.4): 

Nt(x) = "'~(x)"'t(x) = L 1: PI (p)e- i
". , 

p 
(3.10) 

N 2(x) = "'~(X)"'2(X) = L 1: P2(P)e- iP 
•• 

p 

IV. SOLUTIONS OF THE MODEL HAMILTONIAN 

BEfore making use of the results of the previous 
section, we remark that Pl(+P) and P2(-P) are 
exact raising operators of H o, and Pt( -p) and P2(P) 
are exact lowering operators of H 0 corresponding to 
excitation energies p. That is, 

[Ho, Pl(±p)] = ±PPl(±p), 

[Ho, P2(±p)] = =FPP2(±p). 
(4.1) 

The identification of the p's with boson operators 
made in the previous section suggested to us the 
possibility of constructing a new operator T which 
obeys the same equations (4.1), as Ho. This is indeed 
possible, if we define T as follows: 

(4.2) 

[the p's being defined here and in the remainder of 
the paper by Eqs. (3.1b)-(3.4b), i.e., always in 
the hole-particle representation]. It follows that 

[T, Pl(±p)] = ±PPl(±p) (4.3) 

as required, and similarly for P2(=FP). Therefore, let 
us decompose H into two parts 

with 
H = Ht + H2 (4.4) 

HI = Ho - T = {~ Ikl (btbk + otck ) 

~ . } 
--L L{Pt(P)PI(-P)+P2(-P)Pt(P)} , (4.5) 

1'>0 

and 

H2 = H' + T 

= L [2X 1: {V(P)Pl( -P)P2(P) + v( -p) Pl(P) P2( -p)} 
,,>0 

+ 211' L {Pt(P)PI(-P) + P2(-P)P2(P)}] (4.6) 
1'>0 

with v(p) = real, even function of p. By actual 
construction, all the P operators which appear in H2 
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commute with HI' This will be an important feature 
in constructing an exact solution of the model. We 
define an Hermitian operator S, 

(4.7) 

where rp(p) is also a real, even, function of p to be 
determined subsequently by imposing a condition 
that the unitary transformation eiS diagonalize H 2 • 

First we evaluate the effect of such a transformation 
on various operators. It commutes with H 1, 

e,sHle- is = HI = Ho - T, (4.8) 

because both P1 and P2 appearing in S commute with 
H I, as noted above. In the following, p can have 
either sign: 

ei 
S P1(P)e- iS = PI(P) coshrp(p) + P2(P) sinhrp(p), (4.9) 

eiS P2(P)e- iS = P2(P) coshrp(P) + Pl(P)sinhrp(P). (4.10) 

We have verified that this transformation is a proper 
unitary transformation and preserves commutation 
relations (3.7) as well as anticommutation relations 
(2.5), and the reader may easily check this point. 
H2 is brought into canonical form by requiring that 
in (exp is) Hz (exp -is) there be no cross terms 
such as P1(P)P2( -p). This leads to the equation 

tanh 2rp = -}..v(p)/1r, (4.11) 

which cannot be obeyed unless 

l}..v(P) I < 7r for all p. (4.12) 

Equation (4.12) serves to limit the magnitude of 
potentials capable of having well-behaved solutions 
(e.g., a real ground-state energy). For the more 
realistic potentials discussed in the Appendix, there 
is also a more realistic bound on v(p): there, v(p) may 
not be too attractive, but it can have any magnitude 
when it is repulsive, i.e., positive. 

With the choice of rp in (4.11), the evaluation of 
Hz becomes 

eisH2e-is = 2L7r L sech 2rp(P){PI(P)Pl( -p) 
l'>o 

+ P2( -P)P2(P) I - L p(l - sech 2rp). (4.13a) 
,,>0 

The second term is the vacuum renormalization 
energy 

WI = - L p(1 - sech 2rp) 
v>O 

L 100 

{( }..22(p»)i } 
= 27r 0 dp P 1 - :2 - - 1 . (4. 13b) 

It may be expanded in powers of A to effect a com­
parison with Goldstone's many-body perturbation 
theory4; we have checked that they agree to third 
order. 

The problem is now formally solved, for we can 
find all the eigenfunctions and eigenvalues by study­
ing Eqs. (4.4), (4.8), and (4.13). First notice that 
the operator T does not depend upon the interaction 
and that if there is no interaction we could write the 
Hamiltonian either as 

(4.14a) 
or as 

(4. 14b) 

Since HI and Hz commute, every eigenstate, -.v, of H 
may be assumed to be an eigenfunction of HI and H2 
separately. Moreover, -.v may also be assumed to be 
an eigenfunction of each Oil' = A; A" and p" = B: vB-v 
for all p > 0, since these operators commute with 
Hand ;no 

Evidently (4.14a) and (4.14b) provide two dif­
ferent ways of viewing the noninteracting spectrum. 
Ho is quite degenerate: the raising operators of Ho 
are the b+'s and c+'s. By requiring that -.v also be an 
eigenstate of Oil" p" and H, we are merely attaching 
quantum numbers to the degenerate levels of H o• 

lf a,,-.v = n,,-.v and P,,-.v = m,,-.v (where nv and mv are of 
course integers), we say that we have n" plasmons of 
momentum p and m" plasmons of momentum -po 
With no interaction the energy of a plasmon is 

(4.15) 

We may speak of HI as the quasiparticle part of 
the Hamiltonian; in HI the operator T plays the role 
of subtracting the plasmon part of the energy from 
Ho. 

When we turn on the interaction, the above 
description of the energy levels is still valid, except 
that now we are forced to use the form (4.14b) because 
H2 is no longer T. The degeneracy of H is partially 
removed by the interaction, because now the energy 
of a plasmon is 

t'(p) = Ip I sech 2rp(P). (4.16)' 

Notice that the plasmon energy is always lowered 
[and therefore the plasmons cannot propagate faster 
than the speed of light c = 1, i.e., dE'ldp :S 1. In 
the more realistic case discussed in the Appendix, 
the plasmon energy can be increased by the inter­
action although dt'ldp :S 1 is always obeyed.] 
by the interaction; if (4.12) is violated the plasmon 
energy is no longer real and the system becomes 
unstable. Note, there are no plasmons in the ground 
state, so that WI (4.13), is the shift in the ground­
state energy of the system. 

There is one important point, however, that re­
quires some elucidation. We would like to be able to 
say that in view of the fact that HI, a(p), and (3(p) 
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conserve particle number, the most general energy 
level of H (fixed No) is the sum of any energy of 
HI (same No, and no plasmons) plus any (plasmon) 
energy of H2 (note: the plasmon spectrum is inde­
pendent of No). Were we dealing with a finite­
dimensional vector space, such a statement would 
not be true, for even though HI and H2 commute 
they could not possibly be independent. Thus, if 
H2 had n eigenvalues el, ... , en, and if HI had an 
equal number E I , ••• , En the general total eigen­
value would not be any combination of ej + E. for 
this would give too many values (viz. n2 instead of n.) 
But we are dealing with an infinite-dimensional 
Hilbert space and the additivity hypothesis is in 
fact true for the present model. 

To prove this assertion we consider any eigen­
state 'I' which is necessarily parameterized by the 
integers n" and m". Consider the state ip = 
III" (A,,)"'(B.,)m'lw. The state ip is nonvanishing 
and has quantum numbers n., = ° = mp. It is also 
an eigenstate of HI with energy El(w). In addition 
(and this is the important point) the state 'I' may be 
recovered from ip by the equation 

'I' = const X (II (A~r(B:r·lip· 
p 

To every state '1', therefore, there corresponds a 
unique state ip from which it may be obtained using 
raising operators. Conversely, to any eigenstate 
of HI (for fixed No) we may apply raising operators 
as often as we please and obtain a new (nonvanishing) 
eigenstate. Thus the general energy is an arbitrary 
sum of quasiparticle and plasmon energies. 

It may be wondered where we used the fact that 
the Hilbert space is infinite-dimensional in the above 
proof. The answer lies in the boson commutation 
relations of the A's and B's. It is impossible to have 
such relations in a finite-dimensional vector space. 

The eigenvalues corresponding to these states 
ip will be labeled in some order, E, (i = 1, 2, ... ), 
so that the total canonical partition function Z(>") 
and the free energy F(>..) are given by 
Z(>..) = e-FCA)lkT 

= (L: e-E;lkT)(e-W,lkT) II (t e-n"(p)lkT). 
i all p n=O 

;00 

(4.17) 

The first factor is difficult to evaluate directly. How­
ever it can be obtained circuitously by noting that 
the energies E, are independent of >.. and therefore 

Z(O) = e-FCO)lkT 

= (Le-EilkT) II (te-n<CP)lkT). 
i a.ll p ,,""0 

"0 

(4.18) 

But the second factor can be trivially evaluated, as 
can F(O) free energy of noninteracting fermious. 
Therefore we use (4.18) to eliminate the trace in­
volving the E/s in (4.17), with the final result: 

F(>..) F(O) WI 

+ 2kT L: In {(I - r'(p)lkT)/(l _e-«P)/kT)}, (4.19) 
,,>0 

where E and (f;' are given in (4.15) and (4.16). It is 
noteworthy that the ground state and free energy 
both diverge in the case of a a-function potential. 

V. EVALUATION OF THE MOMENTUM 
DISTRIBUTION 

In this section we calculate the mean number of 
particles with momentum k. This quantity is iik 

and is the expectation value of 

(5.1) 

in the ground state. Since iik is an even function of k 
we need only consider k > 0, and it is further con­
venient to introduce a Fourier transform~so that 
[using (2.4)J 

L 

iik = -l11 ds dt eik(.-t) I(s, t). (5.2) 

o 

Here 

1(s, t) = (wi tf;~(8)tf;I(t) 1'1') 

= ('1'01 eiStf;~(8)e-iSeiStf;I(t)e-iS 1'1'0), (5.3) 

where S is given by (4.7), 'W' is the new ground state, 
and '1'0 is the noninteracting ground state which is 
filled with b particles between -k, and k, and has 
no holes (or c particles). This assignment depends on 
there having been no level crossing, which can be 
readily verified using (4.7)-(4.13). 

In order to calculate the quantity e,stf;l(t)e- iS we 
introduce the auxiliary operator 

(5.4) 

where 0' is a c number. We observe that II (t) is the 
desired quantity while 

(5.5) 
In addition, 

at/aO' = e,·si[S. tf;l(t)]e- i
•
S 

ei
•
S[21r/L L: P2( -p)l,?(p)p-lei"'Je-i,sf.(t), 

p 

(5.6) 

where we have used the commutation relations (3.7) 
as well as the fact that tf;1 commutes with P3' Equa-
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tion (5.6) is a differential equation for f,,(t) and (5.5) ZI(S, t) = exp {21r/L L [cosh ip(P) - 1]2 
is the boundary condition. The solution is »>0 

/,,(1) = W,,(t)R .. (t)1/;l(t) , (5.7) 
where Likewise, 

W .. (t) = exp {21r/L L (PIC _p)e'pt R-\s)R(t) = R_(s, t)R+(s, t)Z2(S, t), 
p>{) 

(5.8) 
with 

and R+(s, t) = exp (2'11"/L L P2(P) [sinh ip(P)] 
»>0 

R,,(t) = exp {2'/I/L L (P2( _p)eiPt 

,,>0 x p-l(e- i '" _ e-·"t)}. 

(5.9) R_(s, t) = exp {2'11"/L L P2( -p)[sinh ip(P)] 
»>0 

The reader may verify that (5.7) satisfies (5.5) and X p-lfe'''' _ eiP')} , 

(5.6) by using the commutation relations (3.7). ~ 

We recall the well-known rule that Z2(S, t) = exp (21r/L L [sinh ip(P)]2 

exp (A + B) = exp (A) exp (B) exp (-lj2[A, BJ) 
(5.10) 

,,>{) 

(5.15) 

(5.16) 

(5.17) 

when [A, B] commutes with A and B. ]'rom here on 
we shall set (J" = 1 and drop it as a subscript. We 
note that since Pl(P)+ = PI( -p) and P2(P)+ = 
P2( -p), 

We see at once from the definition (3.1b), (3.2b), 
of Pl(P) that, for p > 0, Pl(-P) lit l ) = O. Similarly 
(itll pep) = 0, P2(P) 1'112) = 0, and ('1121 P2( -p) = O. 
Hence, 

R'+(t) = R-1(t) and W+(t) = W-1(t). 

We also note that Rand W commute with each other. 
Thus, (5.3) becomes 

l(s, t) = <wol1/;~(s)R-l(S)W-l(S)W(t)R(t)1/;l(t) 1'110) 

(5.12) 

where 

11(s, t) = ('111 1 1/; ~(s) W-
1
(s)W(t)1/;I(t) !w1). (5.13) 

12(s, t) = ('1121 R-I(s)R(t) 1'112), 

We have used the fact that the ground state is a 
product state: '110 = '111 * '112 where '111 is a state of 
the "1" field and '1'2 is a state of the "2" field. WI is 
filled with b particles up to +k, and has no c parti~ 
cles; '112 is filled with b particles down to -k, and 
has no c particles. 

Now, using the definition (5.8) and the rule (5.10) 
we easily find that 

W-\s)W(t) = W_(s. t)W+(s, t)ZI(S. t), (5.14) 

with 

W+(s, t) = exp {2'11"/L L PI( -p)[cosh se(P) - 1] 
p>O 

X p-l(e;P' - e"")} , 

W_(s, t) = exp {21r/L L PI(P)[cosh ip(P) - 1] 

and 

11(s, t) = ZI(S, t)(wd W:l1/;~(S)W_W+1/;l(t)W;:l 1'111), 

(5.18) 

If we now define 

h+(y) = 2'11"/L L [cosh ip(P) - 1] 
,,>0 

h_(y) = 2'11"/L L [cosh ip(P) - 1] 
,,>0 

combining (3.10) and (5.15) we have that 

W+(s, t) = exp lL N1(y)h+(y) dy. 

W-Cs. t) = exp - LL NI(y)h_(y) dy. 

Since 

[1/;l(X) , N1(y)] = Sex - y)1/;l(X), 

[1/;~(x), Nt(y)] = -sex - y)1/;~(x). 

it follows that 

W+(s, t)1/;l(t)W:;:l(S, t) = 1/;let) exp [-h+(t)] 

W:!(s. t)1/;~(8)W_(8, t) = 1/;~(8) exp [+h-{s)J. 

(5.19) 

(5.20) 

(5.21) 

(5.22) 
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Finally, 

('1'1\ !/I ~(8) !/I1(t) \'1'1) = I/L L ei"O-.l 
"Skp (5.23) 

== Za(S, t). 

Combining all these results, we conclude that 

l(s, t) = Zo(s, t)ZI(S, t)Z2(S, t)Za(s, t), (5.24) 

where 

Zo(S, t) = exp (h_(s) - h+(t» 

= exp {-471"/L L [cosh !pCp) - 1) 
,,>0 

X (1 - ei,,(a-t»}. (5.25) 

In order to make a comparison with Luttinger's 
calculation of fh, we first observe that the functions 
Zj(s, t) are really functions of r = s - t and that 
they are periodic in sand t in (0, L). We then define 
the functions G(r) and Q(r) as follows: 

exp [-Q(r») == G(r) == ZO(r)ZI(r)Z2(r). (5.26) 

Substituting (5.26), (5.24), and (5.23) into (5.2) we 
obtain 

n" = 271"/L L F(k - p), (5.27) 
f)5,kp 

where 

(5.28) 

::: 1/271" L: dr e,k. e -(J (.) • (5.29) 

In (5.29) we have passed to the bulk limit N, 
L ---? co, not an approximation. 

At this point our expression for fi" is formally the 
same as Luttinger's [ef. L (52), L (69»). The dif­
ference is that our Q is different from his. He obtains 
Q by evaluating an infinite Toeplitz determinant 
with the result that [L (70») 

Q(r) = >.2/271"21'" dp 1 - cos pr \vCp) \2. (Luttinger) 
o p 

(5.30) 

Our Q, which is the correct one to use, is obtained 
by combining (5.15), (5.17), and (5.25), replacing 
sums by integrals in the usual way, and using the 
definition (4.11) of !pep). The result is 

Q(r) = >.2/271"21'" dp 1 - cos pr \uCp) \2, (5.31) 
o p 

where 

It is worth noting that (5.30) agrees with (5.31) to 
leading order in >.2. 

Since we have not yet specified v(p), we may now 
follow Luttinger's discussion from this point on 
with the proviso that we use the correct (>. depen­
dent) u(p) instead of v(p). The reader is referred to 
pages 1159 and 1160 of Luttinger's paper. 

There are two main conclusions one can draw. The 
first is that if we start with a c5-function interaction 
[so that v(p) and hence u(p)] are constants, it can 
be shown that n" = ! for all k. Such a result is quite 
unphysical, but it is not unreasonable because the 
ground-state energy W (4.13a) diverges when v(p) = 
constant at large p. Also, the result would be the 
same if we started with the more physical interaction 

H' = l/L L {PICp) + P2Cp)}{Pl(-P) + P2(-P)}V(P) 
" 

discussed in the Appendix. This is indeed unfor­
tunate, because relativistic field theories usually 
begin with local (Il-function) interactions. 

The second conclusion is that if one makes a 
reasonable assumption about v(p), and hence about 
u(p) and Q(r), one finds that for k in the vicinity 
of kF' n" behaves like 

where 

u(k) = 1, 

= -1, 

k>O 

k < 0 
(5.34) 

and d, e, and ex are certain positive constants. Now 
in Luttinger's calculation 

ex = >. 2/471"2v (0) 2 ,(Luttinger) (5.35) 

[cf. L(75»), where v(O) == lim v(P). 
:0-0 

If 2ex < 1, then the conclusion to be drawn is that 
although the interaction removes the discontinuity 
in n" at the Fermi surface, we are left with a function 
that has an infinite slope there. There is, so to speak, 
a residual Fermi surface. In Sec. IV of his paper, 
Luttinger shows that at least for one example of 
v(p) perturbation theory gives the same qualitative 
result as (5.33) with the same value of ex, (5.35). 

If, on the other hand, 2ex > 1 then there is no 
infinite derivative at the Fermi surface. nk is per­
fectly smooth there (although, technically speaking, 
it is nonanalytic unless 2ex = odd integer.) In this 
case virtually all trace of the Fermi surface has been 
eliminated. But notice that the correct ex to use is 
obtained by replacing v(O) by u(O) == lim"....o u(p) 
in (5.35), i.e., 
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(5.36) (q + NX V) and (k + MX V) = 27r/L X integer (AI) 

Thus, even subject to the requirement that IXv(O) I 
be less than 7r, 20: can become as large as one pleases. 
Yet perturbation theory predicts (5.35) which yields 
20: always less than t. 

We may conclude that a strong enough interaction 
can eliminate the Fermi surface, while perturbation 
theory predicts that is always there. 

VI. DmLECTRIC CONSTANT 

Because the response to external fields of wave 
vector q only depends on an interaction expression 
linear in the density operators, we can immediately 
obtain for the generalized static susceptibility func­
tion or dielectric constant (response + driving force), 
for any temperature, T 

Xx(q, T) = Xo(q, T){sinh !p(q) + cosh !p(q)}2 cosh 2!p. 

1 
= Xo(q, T) 1 + Xv(q)j7r (6.1) 

in terms ofthe "unperturbed" susceptibility xo(q, T). 
It is also a simple exercise to calculate exactly the 
time dependent susceptibility in terms of the "un­
perturbed" quantity. 

It is interesting to note that the susceptibility 
can diverge (which is symptomatic of a phase trans­
formation) only for 

Xv(q) ~ -7r, (6.2) 

i.e. only for sufficiently attractive interactions and not 
for repulsive [v(q) > 0] interactions. 

Recently Ferre1l6 advanced plausible arguments 
why a one-dimensional metal cannot become super­
conducting. We can prove this rigorously in the 
present model. The electron-phonon interaction is 

HoI-ph = L: g(p)[PI(P) + P2(P)]' [~p + ~~p], (6.3) 

where ~ and f are the phonon field operators. In 
the "filled-sea" limit this coupling is bilinear in 
harmonic-oscillator operators, and therefore the 
Hamiltonian continues to be exactly diagonalizable. 
The new normal modes can be calculated and there 
is found to be no phase transition at any finite 
temperature. 

APPENDIX 

We shall be interested in extending Luttinger's 
model in two ways. Firstly, we note that the restric­
tion V = 0 is really not necessary. Turning back to 
Eqs. (2.13) et seq. we impose periodic boundary 
conditions \[I ( •. " Xi + L, ... ) = \[I ( .• " Xi, ••• ), 

and find that 
6 R. A. Ferrell, Phys. Rev. Letters 13, 330 (1964). 

replace the usual condition (2.16), where N = 
number of "I" particles and M = number of "2" 
particles. However, when N, M ~ 00 in the field­
theoretic limit the problem evidently becomes ill­
defined unless V ~ O. 

A less trivial observation concerns the form of 
the interaction potential. There is no reason to 
restrict it to the form ex: PIP2, and in fact the more 
realistic two-body interaction 

X 
H' = L L: v(P){ PI (-p) + P2( -p) II PI (P) + P2(P) I 

p 

(A2) 

is fully as soluble as the one assumed in the text, 
for any strength positive v(p), and provided only 

(A3) 

i.e. provided no Fourier component is too attractive. 
The shift in the ground-state energy is now given by 

W2 = ?; p{ (1 + 2X:(P)Y - I}. (A4) 

The plasmon energy is now 

E"(P) == /pl (1 + 2Xv(P)/7r)i (A5) 

and for the important case of the Coulomb repulsion, 
v(p) = p-2, the plasmons describe a relativistic 
boson field with mass 

(A6) 

and dispersion 

E"(P) = (p2 + m*2)1. (A7) 

Here, too, dE" jdp < 1. 
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The invariance properties of the action integral J = J' p dq are studied for the motion of charged 
particles in one-dimensional electromagnetic fields. Attention is concentrated on those situations 
where the field gradients become large. Whereas in the case of smooth fields and finite gradients 
the asymptotic theory of the one-dimensional oscillator as developed by Gardner and by Lenard 
applies, the presence of large gradients, requires a special treatment. The present considerations are 
restricted to cases where the strong field variation is confined to a small region such that the transi­
tion can be approximated by a discontinuity. It is shown that for time intervals of order I/E, J is an 
adiabatic invariant of at least order Et, E measuring the time variation of the fields. As an example 
the motion of high-speed particles through a plane discontinuity is shown to be adiabatic in that sense: 
Consequently, the initial and the final magnetic moments differ only slightly. 

I. INTRODUCTION 

THE invariance properties of the action integral 
J = jJ p dq play an important role in plasma 

theory. J has been studied by many authors for 
various Hamiltonian systems. It is commonly as­
sumed, however, that (at least for almost all times) 
the Hamiltonian must be smooth, which in most 
cases is understood in the sense of infinite differenti­
ability. In the work of Gardner l and in other studies 
explicitly concerned with particle orbits in three­
dimensional electromagnetic fields2

-
4 it is assumed, 

in addition, that the field gradients must be small. 
Here we consider a special class of situations, 

where the latter condition can be dropped. Our main 
assumption is that the fields must be one dimen­
sional. A typical example of this situation occurs 
when particles drift through a plane shock front 
(as discussed in Sec. 4) or when a collision-free 
cylindrical plasma is confined by an axial magnetic 
field (O-pinch geometry). Particularly, we are con­
cerned with situations where large field variations 
are involved. 

In the case of smooth fields with finite gradients, 
the asymptotic theory of the one-dimensional os­
cillator applies, as developed by Lenard5 and in the 
first part of Gardner's work l where a different 
method is used. 6 From their results we immediately 
obtain the following property: If the Hamiltonian 

1 C. S. Gardner, Phys. Rev. 115,791 (1959). 
2 J. Berkowitz and C. S. Gardner, Comm. Pure App!. 

Math. 12,501 (1959). 
a G. Hellwig, Z. Naturforsch. lOa, 508 (1955). 
4 M. Kruskal, Proc. Intern. Conf. Ionization Phenomena 

Gases, 3rd, Venice, 1957, p. 562. 
" A. Lenard, Ann. Phys. (N. Y.) 6, 261 (1959). 
6 See also Y. Watanabe, Progr. Theoret. Phys. (Kyoto) 27, 

653 (1962). 

H is such that for any fixed time t the curves H = 
const. form a set of closed curves in the p-q plane 
with the topology of concentric circles, and if H is 
sufficiently smooth and independent of time for 
t ~ tl and t ~ t2, then the action integral (the 
integration is performed along a curve of constant H) 

J = f pdq (1.1) 

is an adiabatic invariant in the sense that for any 
initial condition the difference I::.J of the initial and 
the final value of (1.1) can be estimated by 

1 I::.J 1 < M"E" , n = 1,2, ... , E > 0, (1.2) 

where M n is a positive constant depending on the 
exponent n but independent of E (the scale of the 
time variation of H). 

The required topological condition is in many 
cases satisfied if the magnetic field is unidirectional. 
J is computable in tenns of H and the fields, which 
makes the invariance useful for practical applica­
tions. 7 The importance of this generalized invariance 
for one-dimensional and for almost one-dimensional 
fields was first pointed out by Grad.8 

The invariance (1.2) holds for bounded field 
gradients and, particularly, in the limit of vanishing 
gradients and electric fields, where J is proportional 
to the magnetic moment W / B (W = kinetic energy, 
B = magnetic induction). In the case of unbounded 
field gradients and discontinuous fields, however, 
the previous studies of the one-dimensional oscillator 
fail to yield adiabatic invariance. Thus the question 
arises, whether or not an expression similar to (1.2) 

7 M. Kruskal, J. Math. Phys. 3, 806 (1962). 
8 H. Grad, "General Adiabatic Theory," TID-7520 (Pt. 2) 

402 (1956). ' 
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FIG. l. A pendulum in a 
discontinuous force field. 

can be obtained such that, for a given E, tlJ remains 
small when the field gradients become large. 

It is the purpose of the present work to discuss 
the behavior of J under these circumstances. We 
restrict our considerations to the case in which the 
electromagnetic field has a discontinuity and is 
sufficiently smooth otherwise. This is believed to 
be a valid approximation for the case in which the 
field changes rapidly in a region small compared 
with a typical radius of curvature of the particle 
orbit. 

Under the assumptions specified in the following 
section, the present problem reduces to analyzing 
a one-dimensional oscillator moving in a potential 
which is continuous but which may have discon­
tinuous derivatives. A mechanical example is a 
pendulum, the thread of which is bent by a slowly 
moving pin (Fig. 1). Starting out in a way quite 
similar to that followed by Lenard3 we show that 
J is an adiabatic invariant of at least order E~. 

2. ASSUMPTIONS AND DEFINITIONS 

Denoting the physical time by t' we consider 
Hamiltonians of the form 

H(p, q, t') = !p2 + 1/I(q, Et' ), (2.1) 

with E > O. This Hamiltonian clearly contains the 
plane and cylindrical cases mentioned above. We 
introduce 

t = El' (2.2) 

as a new time coordinate and postulate the following 
properties for 1/I(q, t): 

(1) 1/I(q, t) is a continuous function of q and t. 
(2) 1/I.(q, t), 1/It(q, t) are continuous for q ~ R(t) 

with a jump discontinuity at q = R(t) where 
R, R are continuous and R, R bounded. 

(3) There is a continuous function qo(t) such 
that for all t 

1/I(q, t) = 1/I.(q, t) = 0 for q = qo(t), (2.3) 
1/I.(q, t) ~ 0 for q ~ qo(t). 

Under these conditions the set of curves H = const., 
which we call rH , form a set of closed curves with 
the topology of concentric circles, H being zero at 

the center (0, qo)and increasing in any outward 
direction. The two points at which r H intersects 
the q axis will be denoted by ~I(H, t) ~ MH, t) 
satisfying the equations 

1/I(~i' t) = H, i = 1,2. (2.4) 

The action integral (1.1) then takes the form 

J(p, q, t) = f(H, t) = 21 [h [H - 1/1(~, t)]l d~. (2.5) Jf , 

It should be noted that the path of integration in 
(2.5) is a closed level curve of the "frozen Hamil­
tonian" and not the actual orbit, which in general 
is not closed. 

As the H dependence of f(H, t) is monotonic there 
is a uniquely defined inverse function 

H = I/>(J, t). (2.6) 

Given two constants H' < H" we postulate: 

(4) There exist four numbers J', J", Ho, HI 
such that 

o < J' ~ min f(R', t) 
t 

J" 2: max f(H" , t), 
t 

0< Ho ~ mtinl/>(~' ,t) 
HI 2: maxl/>(2J", t), 

I 

(2.7) 

where, for simplicity, we choose the time 
interval considered to be infinite: - 00 < 
t < +00. 

Now, we define the following domains in the 
p-q plane: 

and require: 

Q(t): Ho ~ H ~ HI , 

Q'(t): !Ho ~ H ~ 2HJ , 

QII(t); 0 ~ H ~ 2HI , 

(2.8) 

(5) For (0, q) in Q' (t), 1/I.(q, t) is bounded from 
below; for (0, q) in Q" (t), all first and second 
derivatives of 1/1 are bounded. 

An "orbit" is characterized by any solution pet), q(t) 
of the Hamiltonian equations of motion 

E dq/dt = p, Edp/dt = -1/1.; (2.9) 

pet) and q(t) are continuous at q(t) = R(t). When we 
writeJ(t), f(t), etc., instead of J(p, q, t), f(p, q, t), etc., 
p and q have been introduced as the coordinates of 
an orbit. 
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It should be mentioned that Condition 4 is not 
very restrictive. It is easily shown that 4 is satisfied 
if 1/I(q, t) for all t lies between two comparison func­
tions proportional to [q - qO(t)]2. 

3. PROOF OF THE INVARIANCE 

We show that J is an adiabatic invariant in the 
following sense: Suppose the conditions specified in 
the preceding section are satisfied and at time tl 
the inequality 

(3.1) 

holds, then for any time t2 > tt and E sufficiently 
small 

IJ(t2) - J(tl)1 < MI8t2 - tl) + M2E (3.2) 

is satisfied. 
We show this first under the additional assumption 

that for t in [tl, t2] 

Ho ~ H(t) ~ HI (3.3) 

holds, that is, that the orbit stays in Q(t), see (2.8). 
Then, as a second step we show that (3.3) in fact 
is satisfied. Note, that for the present purpose it is 
not necessary to postulate time independence of the 
Hamiltonian for t < tl and t > t2. (The same is 
true in the smooth case for the first order, but not 
for higher orders.) 

Following Lenard,5 we consider the Liouville equa­
tion written in the form 

E ai/at + /V'H/ ai/as = o. (3.4) 

Here, the action integral J and the arc length s 
on the r curves have been introduced as new 
coordinates, replacing p and q. However, ai/at is 
still to be evaluated at a fixed point (p, q). 

We first try to obtain an asymptotic expression 
of order E for the function I. The formal expansion 

I = 10 + Efl + ... 
introduced into (3.4) yields in the E orders 0 and 1: 

alo/as = 0 (3.6) 

aldas = -(I/IV'H/) alo/at. (3.7) 

A solution is given by 

10 = J 

_ 1 r" aJ d~ 
11 - - V2 J

h 
at [H - 1/1(~, t)J¥ + B(J, t), 

(3.8) 

(3.9) 

where B(J, t) is an arbitrary function of J and t. 
In (3.9) and in the following expressions for 11 

we take p > 0; it is easily shown that ft(p, q, t) = 
-/l(-p, q, t). 

As we shall see, the presence of the discontinuity 
makes al 1/ at become infinite on the curve H = 1/I(R, t) 
so that the conditions 

(3.10) 

(3.11) 

which have been used by Lenard [(3.10) is a condi­
tion on B(J, t)] cannot be imposed in our case, and 
we have to proceed in a different way. First, we 
drop (3.10) because this condition is only necessary 
to insure the single-valuedness of 12, in which we 
are not interested. Instead we choose B(J, t) == O. 
From the differential equation (3.4) we can write 

I = 10 + E(/I - 1: 1tl 
dt) , (3.12) 

where the integral is understood to be performed 
along the orbit passing through the point (p, q) at 
time t. 

At least formally, (3.12) is an exact solution of 
(3.4) as may be verified by taking the time derivative 
of (3.12) along the orbit, observing that 

Now, suppose II and the integral in (3.12) evaluated 
at t = t2 are bounded: 

lid < M', (3.14) 

11'· atl dtl < Mil, (3.15) 
" at 

where M" may depend on E as the orbit does whereas 
M' is independent of E. Then we obtain from (3.12) 

(3.16) 

This leads to an estimate on J in the following way: 
(3.4) requires that f remain constant on any orbit. 
So, using (3.8) and (3.12) we can write 

l(t2) = I(t l ) = J(t l ) + EMil), (3.17) 
Io(t2) = J(t2). 

From (3.16) with p and q taken on the orbit we 
obtain 

/J(tl) + eMt l ) - J(t2) I < E(M' + Mil) 

and with (4.13) 

/J(t2) - J(tl ) I < e(2M' + Mil). (3.18) 

So it remains to show that (3.14) and (3.15) are 
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satisfied with a suitable E dependence of Mil. Using 
(2.5) and (3.9) we write II in the form 

II = ZI(~2' H, t)Z2(q, H, t) 

- zl(q, H, t)Z2(~2' H, t), (3.19) 
where 

Zi(X, H, t) = f 
<,(H.t) 

Gi(~' t) d~ 
[H - ..y(~, t)]~ , 

i = 1,2, (3.20) 
with 

In order to estimate Zi and azd at it is convenient 
to integrate (3.20) by parts. The resulting expres­
sion, however, becomes meaningless at x = qo, 
where ..y. vanishes [see (2.3)]. So we break up the 
interval [~I' bl at the points 

(3.22) 

and use the original representation (3.20) in the 
interval (ai, a2). Defining the functions 

tPil(X) = -2[H - if; (x , t)]!Gi(x, t)I..y.(x, t) 

tPi2(X, y) = 2 f [H - if;(~, t)]t(~:~~: ~D < d~ (3.23) 

( ) f" G,(~, t) dt 
tPi3 X, Y = x [H - if;(~, t)]! <;, 

we obtain 

Zi = tPi1(al) + tPi2(~" a,) (3.24) 
+ tPi3(a l , x) + 2YA(Gdif;.h, 

a2 .::; x .::; ~2: 

Zi = tPi\(a l) + tPi2(h, a,} + tPi2(al , a2) + tPd(X) 

- tPil(a2) + tPi2(a2, x) + 2YA(G'/if;.h, 

where 

Y = [H - if;(R, t)]!, H ;:: if;(R, t), (3.25) 
Y = 0, H < if;(R, t). 

A(Gdif;.) denotes the jump of GJif;. across the 
discontinuity and "I = "Il'Y2 where 

"II = 1 for h<R'::;x 

and "II = 0 otherwise, (3.26) 

"12 = 0 for a l < R .::; a2 

and 1'2 = 1 otherwise. 

Observing from (3.19) that x equals q or ~2' we 
conclude from (3.24) that under the assumptions 
formulated in Sec. 2 all terms of Zi and azJ at 
are bounded except for those terms containing 
aY lat which diverge for H = if;(R, t). {Note that 
[H - if;(q, t)]t = p12\ [H - if;(~2' t)]l = 0, and 
[H - if; (x, t) It ;:: (H 0/2)! for a l .::; x ::; a2'} Thus 
we write 

Iz./ < U, i = 1,2 (3.27) 

where U, WI' W 2 are positive constants, independent 
of E. 

Although a Y I at is not bounded, one can obtain 
an upper bound on J:: laY latl dt: 

f l·laYI 81 
Is at dt < T(t 2 - tl ) + 82E

t
, (3.28) 

where 8" 8 2 are constants, independent of E, tl , t2• 

The proof of (3.28) is given in the Appendix. Using 
(3.28) we conclude from (3.19) and (3.27) that (3.14) 
and (3.15) hold with 

M' = 2U2 

Mil = 4UWI (t2 - tl ) 

+ 4UW2 [8 1E -let. - tl ) + 82El]. 

Thus, from (3.18) we finally obtain (3.2) with 
M. = 8U8 1W2, M2 = 8U2 where for convenience, 
E is restricted to 

E < min I(UI82W2 )", (8I WdWI?I. 
It remains to show that (3.3) is satisfied. We assume 
that the orbit leaves the domain Q(t) as defined 
in (2.8) during ttl) t2]' As we shall see, this leads 
to a contradiction. We first consider the case in 
which the boundary of Q(t) crossed first, is the 
boundary H = Ho and is crossed, say, at time 
t = T 1 ::; t2 • We have with the aid of (2.7): 

H(TI ) = H o, 

while initially 

J(T) < !.J' I _ 2 (3.29) 

(3.30) 

as follows from (2.7) and (3.1). Since during the 
interval [tl, Til the orbit is still in Q(t), (3.2) holds 
as shown before: 

IJ(T I) - J(t l ) 1 < MIEi(TI - tl ) + M2E 

.::; MIEl(t2 - t1 ) + M 2 E. (3.31) 

On the other hand, (3.29) and (3.30) lead to 

IJ(TI) - J(tl) I ;:: J'/2 
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which contradicts (3.31) if E is sufficiently small. 
So, the orbit cannot leave the domain Q(t) by passing 
the boundary H = H Q. If the boundary H = HI 
is assumed to be crossed first, the argument runs 
similarly. This, then, completes the proof of (3.2) 
except for the estimate of (3.28) which is given in 
the Appendix. 

Since the right-hand side of (3.2) goes to zero 
with E ---7 0 for all orbits, J is an adiabatic invariant. 
According to the conventional terminology we have 
shown invariance of order t because the leading 
term contains E in that power. 

We add a brief remark concerning higher-order 
invariance. While for general field situations only 
invariance of order t seems to be possible by this 
method, there are examples in which invariance 
of order 1 can be obtained, in spite of the presence 
of discontinuities. This, for example, is true for the 
plane discontinuity moving with constant speed as 
discussed in Sec. 4. However, as we do not need 
this improvement there, we shall ignore it and, for 
sake of brevity, use the general result (3.2). 

In the present approach the higher-order in­
variance is excluded by the presence of the term Y, 
the time derivative of which becomes large if H 
approaches 1f(R, t). However, if R remains suffi­
ciently close to the center qo of the r curves, iJ Y I at 
remains finite and higher-order invariance can be 
obtained. On the other hand, for a particle which 
did not hit the front before and starts passing it, 
the equation H = 1f(R, t) is satisfied at least once 
and we cannot obtain higher-order results. 

In cases where the nth derivatives of H have 
jump discontinuities (all lower derivatives being 
continuous), tbe present procedure may be used to 
obtain invariance of order n - t instead of order 
n - 1. There, however, the gain of one half order 
will be less interesting than in the case n = 1 
treated here, where without that extra half order, 
there would be no invariance at all. 

In some cases where the magnetic field goes 
through zero, (2.3) does not hold and some orbits 
may become nonadiabatic. The case of a homo­
geneous magnetic field which goes through zero has 
been studied by Tamor. 9 

4. PARTICLES PASSING THROUGH A 
PLANE SHOCK FRONT 

As an example, we consider particles moving 
through a plane discontinuity separating two regions 
of constant homogeneous magnetic field. On either 
side of the front the field vector B points into the 

• S. Tamor, J. Nucl. Energy CI, 199 (1960). 

same direction parallel to the front. The front moves 
along its normal direction with constant speed, 
inducing an electric field E perpendicular to Band 
parallel to the front. 

In speaking of a shock front, we must keep in 
mind that a discontinuity probably is not a realistic 
model for any actual collision-free shock wave, 
because it ignores the oscillatory structure behind 
the front as established by C. S. Morawetz. 10 

Particle orbits of the kind considered here have 
been discussed previously by E. N. Parkerll in 
connection with acceleration mechanisms for par­
ticles in electromagnetic nelds. Although adiabatic 
invariance is assumed, it so far seems established 
only by numerical calculations. 

We treat the present problem in two steps. First, 
we show that the particle can stay with the front 
only for a finite time and is left behind afterwards. 
In the second step this result is used to establish 
that the change of the magnetic moment caused 
by the passing front is small for small front velocities. 

Before giving a more precise formulation of these 
properties we observe that a particle separated from 
the front by a sufficiently large distance performs 
the familiar drift motion in crossed fields, or, if 
the electric field vanishes, moves around in circles. 
Particles in this state of motion will be called 
IIseparated"; particles which are not separated are 
"connected" (to the front). 

Looking at the particle motion in a frame of 
reference in which E vanishes on one side of the 
discontinuity, we can state the point to be shown 
in the following way (t' tl E as before is the 
physical time): 

(i) Suppose a particle passes through the front 
at time t~. Then, for sufficiently small front veloc­
ities !el, a positive constant N can be found such 
that the particle cannot pass through the front again 
at any time t~r = t~ + (J with 

8> Nllel. (4.1) 

(ii) Suppose a particle initially separated from 
the front passes through the front at t' = Tr for 
the nrst time, and lei is sufficiently small. Then, 
at any time tf > Tr + N Ilel the particle is separated 
again, now drifting (or circling) on the other side 
of the front and will stay so for any later time. 
The difference between the initial and the final 
magnetic moment HIB is of order lei! or of higher 
order. 

10 C. S. Morawetz, Phys. Fluids 4,988 (1961). 
11 E. N. Parker, Phys. Rev. 109, 1328 (1958). 
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( separated) 

intermediate state 
(connected) 

inital state 
(separated) 

FIG. 2. Particles passing through a plane discontinuity. 
(The magnetic field jumps by a factor of 2.) 

We choose a Cartesian coordinate frame as in­
dicated in Fig. 2 and take E = 0 in x < R. Then 
the Hamiltonian can be written as (mass and charge 
are eliminated by choosing suitable dimensionless 
variables) : 

H = !p! + I/I(x, t), 

{
lB~(X - XO)2 for x < R(t), 

I/I(x, t) = l[B2x - R(B2 - B 1) - BIXO]2 

for x > R(t). 

(4.2) 

Xo denotes a constant of motion which, geometrically, 
is the position of the center of the circular orbit 
section in x < R. Bl > 0, B2 > 0 are the magnetic 
field strengths in x < R and x > R respectively. 
The speed of the front is given by 

c = ER. (4.3) 

Since only the product of E and H is specified so far, 
we can postulate in addition 

IHI = (2H,,)t. (4.4) 

That is, we take IHI as the upper bound for the 
initial particle speed. [We assume that (3.1) is 
satisfied.} The induced electric field in x > R is 
given by ER(B2 - Bl)' 

Although for the Hamiltonian as given by (4.2) 
the equations of motion (2.11) can readily be solved 
in closed form for either half-space, the matching 
problem seems to make any explicit approach more 
complicated than the present one. 

Looking at the assumptions listed in Sec. 2, we 
observe that (4.2) is of the form (2.1). We can 
identify 

qo(t) = {xo for R?:: XO (4.5) 

R + (B1/B2)(xo - R) for R < Xo. 

The action integral J takes the form 

J = lI'Hf 1 +..!..) + 2Hf 1 _..!..) 
\81 B2 \81 B2 

X [arcsin;\ + X(1 - ;\2)1], -1 S ;\ S 1, 
(4.6) 

J = 21fH/B2' X < 1 

J = 21fH/BI , ;\ > 1, X = BI(R - xo)/(2H)i. 

For ;\2 > 1, the particle is separated, and for 
;\2 < 1 it is connected to the front. Since with (2.5) 
and with Br = min (Bl) B 2), Brr = max (BlJ B 2) 

211'H < f(H t) < 21fH 
Bn - , - Br 

holds, we can choose in view of (2.7) 

J' _ 211'H' 
- BIt ' 

H'Br 
Ho = 2Bu ' 

J" = 211'H" 
Br ' 

HI = 2H"BII • 

Br 

(4.7) 

(4.8) 

The assumptions of Sec. 2 concerning continuity 
and boundedness of !Jt(q, t) and R(t) are clearly 
satisfied. 

Thus (3.2) holds, and J is an adiabatic invariant. 
Using this we shall prove (i) indirectly, assuming 
that the particle passes through the front at time 
th with 0 being arbitrarily large, which then leads 
to a contradiction. 

With the aid of (3.2) and (4.7) we can estimate 

H(tn ) < (Bu /211')(M IE
i O + M2E) 

+ (BII/Br)H(tr). (4.9) 

On the other hand, (4.2) immediately leads to a 
lower bound: 

H(tlI) ?:: lB,2[R(tII) - XO]2 

?:: lBf2[/HI EO - IR(tr) - XO/]2. (4.10) 

It is clear that (4.9) and (4.10) cannot be satisfied 
for arbitrarily large O. An upper limit 0* is obtained 
by equating the right-hand sides of both estimates, 
which leads to 

0* = IR(t~)lii xol [1 + O(E')] 

+ E 1~1 (2BIIB~(tI»)\1 + O(Ei )]. 
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For sufficiently small E we can write 

8* < 2[2H(tr)]' (1 + (Brr)!) = N . 
- Icl Bx 2Br Icl 

So, for (} > N 1!C1 there is a contradiction and the 
particle cannot move through the front again, 
which proves (i). 

As for (ii), we first assume that the particle for 
t' < Tl circles in x < R which implies R < 0 because 
otherwise it never would touch the front. 

By using (i) we immediately see that the particle 
has again to be separated from the front at any 
time t' > 7{ + N IJcl hitting the front for the last 
time at t' = Tn. It cannot have returned to x < R 
because it would be met again by the front. So, it 
must be drifting on the other side and stay so because 
the front moves off with speed R while the drift 
speed is R(I - B t IB2 ). The invariant for the 
initial and the final separated state is proportional 
to the magnetic moment HIB, as follows from (4.6) 
with ")..2 > 1. It is easy to see from the solutions 
of the equations of motion that H, and hence J, 
remain constant in the circling state and vary 
periodically with time in the drift state, the variation 
being of order ~. 

According to (i), "II - TI is of order II E. Thus 
we see from (3.2) that the corresponding change 
of J is of order El or smaller [according to the 
present notation we have t2 - tl = E(TU - TI) = 0(1)]. 
Thus the entire change of J is of order El which 
gives the result of point (ii). 

Iftheparticleinitiallydriftsinx < R (withR > 0), 
a suitable coordinate transformation leads to the 
situation just considered. It is easy to show that 
the corresponding change of J is of order E so that 
the present results still hold. Similarly, (ii) holds if 
the magnetic moment for the final state is evaluated 
in the frame moving with the drift velocity. 

Transforming to a frame of reference in which 
the front is at rest, we see from (4.3) and (4.4) that 
the variation of J is small if the drift velocity is 
small compared to the gyration speed. In an actual 
shock wave, this condition can, however, not be 
satisfied for all particles. In many cases of practical 
interest, however, the condition is fulfilled for (most 
of) the electrons and for the high-speed ions. Further­
more, the present results show that a plane dis­
continuity front cannot accelerate the fast particles 
to nonadiabatically high energies.1l 
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APPENDIX 

Before estimating the integral 

J. '. layl 
X = I. ITt dt, (AI) 

with Y as defined in (3.25), we write down some 
properties needed later on. 

Defining F = y2 = H - Yt and noting that 
It'll = Ipl/E :::; (2H1)i, we can write for (0, q) and 
(0, R) in Q"(t) and E sufficiently small 

IdFldtl = IYt,(q, t) - dif;(R, t)ldt/ < KI , 

WFldt2
/ = Iif;u(q, t) + Yt,a(q, t)q 

- d2 if;(R, t)ldej < K2/E, 

(A2) 

where Kh K z, are constants, independent of E. With 

T = 2Hi/C, ~ = KIT, (A3) 

where C is the upper bound on Yta for (0, q) in Q"(t) 
(see Assumption 5 in Sec. 2), we can establish the 
following property: 

Consider a time interval e ; [T', T' + tT) arbitrarily 
situated in [ll - t2] (E is taken sufficiently small so 
that ET is smaller than t'J - t}). Furthermore, con­
sider an orbit staying in Q for t in [tz, ttl, on which 
during e 

(A4) 

is satisfied. Then, for sufficiently small E there are 
not more than four points in e at which q(t) - R(t) 
changes its sign (intersection points). 

As a first step we shall show the following; 

If an orbit stays in Q for a time interval during 
which q is either always positive or negative, then 
for sufficiently small E there are at most two inter­
sections in that interval. 

We first assume that in the interval considered, 
q is positive. Since q and R are continuous, <i - R 
must either be zero or must have opposite signs at 
two successive intersections. 

We assume that there is an intersection at t = Tl 

with 
(A5) 
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~--+-~n7~~--------~~n*--

FIG. 3. The domain D, consisting of D, and D 2• 

If such a point does not exist, there can only be one 
intersection and the claim holds trivially. 

N ow suppose in the interval considered there is 
another intersection with t > Tl; then there must 
be at least one, say at t = T2 > TI where 

(A6) 

is satisfied. Denoting the lower bound of 1/;. in Q' 
by L and the upper bound of R by A we can estimate 

g(TI) + (LN)(T2 - TI) - Ilh) 

(A7) 

For i < LI A, (A7) contradicts (A5) so that the 
intersection at t = T2 cannot exist. Since only one 
intersection is possible for t < T I , we have the desired 
result. In the case ij < 0 the proof is similar. 

Now we are able to prove the property quoted 
above in the following way. Let D be the intersecting 
domain of Ipi ::; H~ and of Q. It consists of two 
separated, simply-connected domains D

" 
D2 lying 

in q ~ qo, respectively (see Fig. 3). So, as follows 
from (2.3) and (2.9), 1/;., p, and Ii have definite signs 
in D, and D 2 • 

At an intersection point we have q = Rand, 
therefore, from (2.1) and (3.25), Y = Ipl/2t which, 
with the aid of (A3) and (A4), leads to 

Ipi ::; 2(~o)t < H~ for ~ < Ho/40, (A8) 

so that for sufficiently small E the orbits considered 
here have all their intersection points lying in D. 
Now we consider that part of the orbit which, 
during e lies in D. It consists of a sequence of 
continuous sections which we denote by G ,. Since 
if. has a definite sign on every G" there are not more 
than two intersections on a given G ,. 

We now estimate the time At necessary to cross 
the strip Ipl ::; Ht. Since in D the function pet) 
varies monotonically with time, (2.9) yields 

At = ..E = ~ -- > e - = ~T li
Ho' 

d I ilIol 

dp 2H~ 
-Hoi P -Hoi Ilf.1 C . 

(A9) 

As the interval e has the width ~T also, the orbit 
section associated with e can, at most, have two 
parts G; and has therefore not more than four 
intersections, which completes the proof. 

Now we note from (2.8) and (3.25) that for (0, R) 
not in Q", we have Y == 0 so that, in view of (4.1), 
we can replace 1/;(R, t) by HI which also leads to 
Y == 0 while now (0, R) remains in Q". SO we need 
only consider (0, R) in Q" and we can use (A2). 

Considering (AI), we divide the interval [t l , t2J 
in subintervals L. of width ~T and separate them 
into two classes: 

M; : containing at least one point l at which 
Y(l) > (2eo) \ 

N i : containing no such point. 

For an arbitrary time t in an M interval we can 
write, using (3.25), (A2), and (A3), 

IF(t) I = ken + t F dtl 
> 2eo - eKIT = eo, (AlO) 

so that 

Y > (~o)~. 
Using (2.9), it is easily shown that 

aYlat = dY Idt, 

and we obtain from (A2) and (A12) 

laa~1 = 2~ I~;I < 2~)i' 

(All) 

(A12) 

(A13) 

Therefore, the contribution of all M intervals to 
X can be estimated as 

In the N intervals, since we need continuity of 
Y, we subdivide at every intersection point obtaining 
the subintervals N~. Since Y ::; (2~o) t, there are 
not more than four intersections in one N interval 
so that the total number II of N' intervals can be 
estimated by 

lJ ::; 5[(t2 - tl)/~T + 1]. (A15) 

We split the N'-intervals further by all points at 
which Y changes its sign, obtaining the intervals N~/. 
(For definiteness, we consider Y = 0 positive.) 

From the fact that in an Nil interval Y can only 
be discontinuous when Y = 0, it follows that Y 
vanishes at least at one boundary point with the 
possible exception of those N' intervals bounded by 
an intersection point (see Fig. 4). Ignoring these 
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exceptional cases for the moment, we can estimate 
with the aid of (A2), 

[FI < (K2/E)AT., 

where AT, denotes the width of the interval N;'. 
Denoting the larger boundary value of F by F Land 
the smaller one by Fs, we obtain 

FL - Fs < (K2/E)(AT.)2 

and, therefore, 

Y L - Ys < [(K2/E)(AT;l + y~]i - Ys 

::; (K2/E)fAT;, 

so that we now have the estimate (summed over 
one N' interval) 

~ L;" laa~l dt = ~ (YL - Ys). 

< (~2rET + 2(21:0)+, (AI6) 

where the second term takes care of the exceptions 
mentioned above and is obtained in the following 
way: If an Nil interval does not have Y = 0 at 
one endpoint (which is only possible if one end­
point is an intersection point) then Y must vanish 
at one endpoint. Furthermore, Y varies monoton­
ically in every Nil interval. So, noting that Y ::; 

y(t) 

FIG. 4. Splitting of an N' interval into Nil intervals [the 
interval next to the intersection point A is of the exceptional 
type: Y(t) does not vanish at one boundary point]. 

(2E8); and using (A12), we can estimate (N~' denot­
ing the exceptional time interval), 

Le" laa~l dt = ILe" ~~ dtl ::; (2E8)+. 

As there are at most two such intervals in one N'­
interval, their contribution to (AI6) is smaller than 
or equal to 2(2E8)i. Since there are v N'-intervals 
we finally obtain, observing (AI5) and (AI6) and 
including (A14): 

Il'laYI -l( ) 8 t X = t. at dt < 8 1E t2 - tl + 2E , 

where 8 1 and 8 2 are constants independent of E. 

Thus, the estimate (AI) holds. 
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The Dirac Equation and the Unitary Representations of the 
Inhomogeneous Lorentz Group 

L. B. REDEl 

Tait Institute of Mathematical Phy~ics, University of Edinburgh, Edinburgh, Scotland* 
(ReceIved 13 August 1964) 

The Dirac equation in its quantized form is discussed in order to deduce the structure of the unitary 
~epresentation of the ~oincare group in Fock space. There is a short account of discrete symmetries 
ill Fock space and a sImple method of calculating spin matrix elements is outlined. 

I. INTRODUCTION 

T HE unitary representations of the inhomo­
geneous Lorentz group are well known, a com­

plete classification of them was given already by 
Wigner in 1939.1 Each irreducible representation is 
characterized by two quantum numbers, the mass 
and the spin. The solutions of the Dirac equation 
transform under the connected part of the homo­
geneous Lorentz group according to a four-dimen­
sional spinor representation, which is reducible and 
not unitary. On second quantization one obtains a 
Hilbert space which is the direct sum of one, two, etc., 
particle subspaces, the so-called Fock representation. 
The transformation properties of the field define a 
unitary representation of the inhomogeneous Lorentz 
group in Fock space. This connection is implied in 
several places in the literature,2 but to the author's 
knowledge it has not yet been spelled out in detail. 
The present paper intends to do this, hoping to com­
bine clarity with simplicity by using elementary 
methods. There seem to be two considerations to 
justify this. If the notions of Hilbert space and rela­
tivistic invariance are pertinent to particle physics, 
the scattering processes are to be described by iso­
metric wave operators which satisfy certain asymp­
totic conditions and establish a unitary equivalence 
between the "free" and "interacting" generators of 
the Poincare group. One particular model for two 
spinless particles which satisfies all these conditions 
is already known.3 For this kind of approach a de­
tailed understanding of the Hilbert space spanned 
by the" free" states and the unitary representation 
of the Poincare group on it, is essential. Secondly, 

* Present address: Institutionen for teoretisk fysik, Ume!\. 
Universitet, Ume!\., Sweden. 

1 E. P. Wigner, Ann. Math. 40, 149 (1939). 
• See, e.g., A. S. Wightman in Dispersion Relations and 

Elementary Particles (John Wiley & Sons, Inc., New York, 
1960). 

aT. F. Jordan, A. J. Macfarlane, and E. C. G. Sudarshan, 
Phy~. Re,:. 133, B48~ (19?4), and also L. B. Redei "Composite 
PartICles m a RelatlvlStlC Model of Two-Body Scattering" 
(to be published). 

the field equation supplies additional information 
with regard to symmetry, especially discrete sym­
metry. For example, the Dirac equation entails the 
existence of a pair of particles related through charge 
conjugation. There is nothing in the theory of the 
Poincare group which necessitates this. Also, the 
Dirac equation limits the choices of possible time­
reversal transformations. 

The next introductory chapter contains a short 
discussion of the solutions of the Dirac equation, 
mainly in order to establish a unique phase conven­
tion for the spinors. (Normally helicity is used to 
classify further the positive and negative energy 
solutions, which still leaves the phases undermined). 
After this, the connection between the transforma­
tion properties of the field and the unitary repre­
sentation in Fock space is explicitly demonstrated. 
This is followed by a short discussion of discrete 
symmetries; space, time inversion and charge con­
jugation. Finally, a method is briefly outlined by 
which matrix elements between spinors can be 
evaluated in a simple fashion. 

2. SOLUTIONS OF THE DIRAC EQUATION 

We start from the Dirac equation 4 

(-i a~''l + m)if;(x) = 0, 

where 'Y~"'/ + 'Y''Y~ = 2gP
'. A complete set of solutions 

is given by u(p)e- iPZ and v(p)e'PZ, po > 0, p2 = m2, 
where the four-component spinors satisfy 

(-p~'Y~ + m)u(p) = 0, 

(p~'YP + m)v(p) = 0. 

(1) 

(2) 

For a given 4-vector p, there are two pairs of linearly 
independent solutions u(P) and v(p), provided p2 = 
m2

• Normally one uses the helicity operator to 
distinguish further among these, but we employ a 

'We shall be using the same conventions as in S. S. 
Schweber, An Introduction to Relativistic Quantum Field 
Theory (Row, Peterson and Company, Evanston, Illinois, 
1961). In particular, gOO = _gii = 1, gap = 0 if ex ;c f:J. 
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different set of solutions. Let SeA) be the up-to-a- and also 
sign spinor representation of the homogeneous 
Lorentz ~oup .c which satisfies6 Q(fJ, A)p = p, 

S(A)-I-yPS(A) = AP,-y', 

det S = 1, 

i.e., the Q(p, A) are pure rotations. For the repre­
(3) sentation S one has the corresponding equations: 

for all A E .c. From Eqs. (1), (2), and (3) it follows 
that if Ap = q, A E .c, then S(A)u(p) is a u(q) and 
also S(A)v(p) is a v(q). Following Wigner we define 
a set of transformationsl L(py. 

L(P)Oo = m-1po, L(Ptk = L(Plo = _m-1p\ 

S[Q(P, A)] = S[L(P)]S(A)S[L(rlpf l ] , 

S[Q(P, Al)]S[Q(A~lp, A2 )] = ±S[Q(P, AlA2)], 

(10) 

(11) 

where in the last equation the choice of sign is 
made to correspond to the sign in the equation 
S(Al )S(A2 ) = ±S(AlA2 ). This can be best seen by 
considering SeA) as being a single-valued representa­

L(P)\ = fJ\ + [m(m + pOWlpkpl. (4) tion of the covering group. The path associated with 

The L(p) have the properties 

L(P) E .c, 
L(P)p = P or L(Ptlp = p, 

A in Eq. (10) then determines the path of S[Q(p, A)] 
in such a way that Eq. (11) holds [see the remark 

(5) after Eq. (7)]. The S[Q(p, A)] have two important 
properties: 

where p = (m, 0). For simplicity we now choose a 
particular set of -y matrices: 

o (1 0 ) 
-y = 0 -1' 

-yk = (0 U.), -u, 0 
(6) 

where (J'k are the Pauli matrices.4 (A different choice 
for the -y matrices would give a different but never­
theless equivalent representation in Fock space.) 
Let 

U l (fJ) = (i), 
and 

We define ui(p) and Vi(P), i = 1,2, ... , by 

u,(P) = S[L(p)-l]U,(fJ), 

v;(P) = S[L(Pfl]v;(fJ). 
(7) 

One might object that S being a double-valued 
representation, Eq. (7) determines u,(p) and v;(p) 
only up to a sign. However, Eq. (4) defines a con­
tinuous one ~ one mapping of the singly cOllIlected 
parameter domain p2 = m2, pO > 0, into .c. The 
image set L(p) is therefore singly connected. We 
can fix the sign uniquely by choosing S[L(fJ)-l] = I. 
For any A E .c and any 4-vector p, p2 = m\ po > 0, 
we define l 

Q(P, A) = L(P)AL(A -lp)-l. (8) 

Straightforward computation shows that 

Q(P, Al)Q(A~lp, A2) = Q(P, Al A2) (9) ---
5 See e. g., H. Boerner, Representations of Groups (John 

Wiley & Sons, Inc., New York, 1963). 

(a) They are unitary matrices. This follows from the 
fact that S[Q(p, A)] maps the u,(p) and v;(fJ) into 
perpendicular unit vectors.6 

(b) The spinor S[Q(p, A)]u,(p) is a u(p) and simi­
larly S[Q(p, A)]V,(p) isav(p). The matrices S[Q(P, A)] 
thus decompose, which we write as 

S[Q(P, A)] = D"(P, A) EB D"(P, A), (12) 

where D"'" (p, A) are 2 X 2 unitary matrices which, 
because of Eq. (11), satisfy 

D"'"(P, Al)D""(A~lp, A2) = ±D""(p, Al A2). (13) 

3. REPRESENTATION OF THE INHOMOGENEOUS 
LORENTZ GROUP IN FOCK SPACE 

We write the four-component field operator if!(x) 
in the form 

if!(x) = (211')-1 J d3p (~y 
X L [u,(p)e-i,,.c,(p) + v,(p)e'P$ d;(P)], (14) , 

where c; and d; are the usual annihilation operators: 

[c.(P), c;(P')]+ = [d,(P), d;(P)]+ = 8.;8(P - p'). 

The transformation law4 

U(A, a)-lif!a(x)U(A, a) 

= L S(A)a~if!~(A -lex - a» (15) 
~ 

defines a representation of the Poincare group I A, a I. 
First we determine how they act on the creation 
operators c,t(p) and d8p). From Eqs. (14) and (15) 

8 For the proof of this, one has to use that for Hermitian 
-yo, S+-y0 = -y0S-I, see e.g., Schweber, Ref. 4. 
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U(A, a)-Iy;(x)U(A, a) 

= (2'IIT~ J d3p (~r ~ [S(A)ui(P)e-iP!.\-'(X-al!c,(p) 

+ S(A)v, (p)eiPI A -. (x-a) J d;(P)] 

= (21ft! f d3p (;ay(A~I!,)Or 
X L: [S(A)u,(A-Ip)eiPae-iPXC;(A-lp) 

i 

+ S(A)vi(A -lp)e-iPaeiPZ d:(A -lp)]. (16) 

Now we use Eq. (10) to express SeA) in terms of 
S[Q(p, A)] and S[L(p)]: 

SeA) = S[L(prl]S[Q(p, A)]S[L(A-Ip)]. 

Substitution into Eq. (16), together with Eqs. (7) 
and (13), gives 

U(A, at1y;(x)U(A, a) 

= (21ft
q J d3p (~r(A~I!,)Or ~ S[L(Pt 1

] 

X [Du(P, A)uJp)eipae-iPXC;(A-lp) 

+ D"(p, A)vi(p)e-ipaeiPX a;(A-1p)], 
and finally 

U(A, a)-Iy;(x)U(A, a) = (21f)-~ J d3p (;r(A~f)Or 

X L: [D;i(P, A)ui(p)eipae-iPXci(A-Ip) 
i.i 

+ D;;(p, A)Vi(PyipaeiPx d:CA-1p)] , 

On the other hand, 

U(A, atJy;(x)U(A, a) = (21ft l J d3p (~ir 
X L: [ui(P)e-iPXU(A, atlC;(p)U(A, a) 

i 

+ vi(P)eiPZU(A, atl d;(P)U(A, a)]. 

Comparing this with the previous equation one 
obtains 

U(A, atlci(P)U(A, a) 

= L: [(A-Ip)O/pO]!eipaD:i(p, A)Cj(A-Ip), (17) 
i 

U(A, a)-l dit(p)U(A, a) 

= L: [crlp)O/pO]1e-ipaD:i(p, A) d;(A-Ip) (18) 

or 

U(A, a)c;(p)U(A, at l 

= [(APt/po]tei,\p'a L: D1i(Ap, A)c;(Ap) , (19) 
j 

U(A, a) d!(p)U(A, arl 

= [(Ap)O /pO]VAp'a L Di:(Ap, A) d;(Ap), (20) 
j 

where the asterisk * denotes complex conjugation. 
The particle space H is an infinite direct sum of 
subspaces 

",m 

where the H,,·m consist of vectors of the form 

r,m,,-, (n!tj(m!r! 

J d3PI J d3

p" J d3

ql J d3
qm 

X (p~)!' . . (p5J (q~)!' . . (q~)! 

X L: L: C;.(PI) '" c;.cPn)d;.(ql) ... d;Jqm) 
'l J' 

(21) 

with the restriction that the functions r· m are anti­
symmetric in the first n and the last m spin and 
momentum variables. The inner product is given by 

X J d3

PI ... J!fE'!: J d3

q! ... J d 3

qm 
(p~) (P~) (q~) (q~) 

X L: L: r,m'(PI, .. , p,,; ql, ... q .. )i .... i.;i ... ·im 
i j 

X g,,·,m'(PI, ... Pn; ql, .. , qm)i •... i.;i .... im. (21') 

The transformation laws (19) and (20) imply, 
assuming the vacuum state to be invariant, 

[U(A, a)f'O](p), = eipa L: D;.(p, A)jl,O(A-1p)., (22) . 

The transformation law in the many-particle spaces 
H,,·m is obtained simply by taking tensor products 
of HI,o and Ho,l. The transformations (22) and (23) 
are indeed unitary with respect to the inner product 
(21') and taken together with Eq. (13) they define a 
pair of irreducible representations2 of the inhomo­
geneoUS Lorentz group. The other subspaces ob­
tained by taking tensor products are invariant but 
no longer irreducible. 

We now discuss briefly the infinitesimal generators. 
In view of the remark above we can restrict our­
selves to Hl,O and HO. I

• The generators of the sub­
group of translations U(l, a) are the multiplications 
by p~. To obtain the other generators J and N we 
have to use the formula 

S[A(X)] = I + tx~·(I'~I'. - 1'.1'#) (24) 

for an infinitesimal Lorentz transformation A#. = 
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0", + A\. This is proved, e.g., in Ref. (4). The genera­
tor ] is defined by 

U[A(O)] = I - iOn·], 

for A(OY, = 0''. + A"" where 

and 0 is small. Equations (4) and (8) allow one to 
calculate Q[p, A(O)]; 

Q[P, A(O»)"" = g'" + A"', 

which, with our particular choice of the 'Y matrices, 
gives 

S(Q[P, A(O)] I = I - iOn· (1: EB 1:), 

where 1: = !d. Combining this with Eqs. (22) and 
(23) we have 

(Jf'O)(P), = -ip 1\ afl.0(p), + L: s~.f·°(P)., 
• (25) 

(Jt·l)(p), = -ip 1\ atO.I(p), + L: s;.tO.I(p)., 
• 

where 

SU = 1: and s" = _s,,*. (26) 

This shows that D"(p, A) = DU(p, A)*. 
Similarly, N is defined by 

U[A(O)] = I - iOn·N 

for A(OY, = 0", + A"'" where Aoo = Akl = 0 and 
Ako = AOk = Onk

• In this case one has 

Q[P, A(O)Y, = 0", + ~Q[P, A(O)]"" 

where ~Qo" = ~Qao = 0 and 

~Qkl = O(m + pO)-I(Pknl _ pInk) 

giving 

SI[Q(P, A(O)]I = I +iO(m +pO)-ln'[p 1\ (1:EB 1:)], 

and finally 

(Nr·O)(p). = -ipo ar·°(p). 

- (m + pO)-1 L: p 1\ s~.r·°(p)., (27) 
• 

(Nt·1)(p). = -ipo at·1(p). 

- (m + pO)-l L: p 1\ s;.tO.1(p) •. 
• 

This concludes the discussion of the connected 
part of the inhomogeneous Lorentz group. The next 
chapter contains a short account of the discrete 
symmetries. 

4. DISCRETE SYMMETRIES. CALCULATION OF 
MATRIX ELEMENTS 

For the sake of completeness we now discuss 
parity, time reversal, and charge conjugation. In 
this connection see Ref. 6. 

a. Parity 

This is given by a unitary transformation U(i.) 
which satisfies U(i.)2 = ±1. It acts on the field 
1f;(x) according to 

U(i,)-l1f;(X)U(i.) = n,,(21!")-! J dSp (m/pO)! 

X L: hOUi( -p)e-i"Zci( -p) + 'Y°Vi( _p)e'PZ d:( -p)] 

= np (21!")-J J dSp (m/pO)! L: hOS[L(-pfl] 
, 

X Ui (p)e-iPZci ( -p) + 'Yo S[L( _p)-l]vi@ei "% d;( - p) l, 

where (np)2 = ±1. From Eqs. (3) and (4) follows 

'Yo S[L( -pf1rV'Y"'Y° S[L( -p)-lhO 

= [L(P)-ly.'Y' = S[L(pf1r1'Y"S[L(Pf1] 

implying 

S[L(P)-lhO S[L( -p)-lr\O = I. 

(Here we made use of the irreducibility of "I" and the 
convention S[L(p)-l] = 1.1 This gives 

U(i.)-l1f;(X)U(i.) = n,,(21!")-! J d3p (~y 
X L: [ui(P)e-iPZci( -p) - vi(P)eiP

% d;( -p)] 
i 

or 
U(i.)-lCi(P)U(i.) = npci( -p), 

U(i,)-ld;(P)U(i.) = -n"d;( -p), 

and finally 

[U(i.)r·O](p). = n"r·O( -p)., 

[U(i.)t·1](p). = -ntt· 1
( -p) •. 

b. Time Reversal 

(28) 

Time reversal is an antiunitary transformation 
U(ii) defined by 

U(i t f
l 1f;(x)U(it ) = T1f;( - t, x), (29) 

where the matrix T satisfies 

With our choice for the "I matrices 
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Writing down Eq. (29) in detail one has 

U(i,)-l1/t(X)U(i,) = nT(211T' J d3p (;at 
X L ["l'l'Y°u;( -p)e;PZci ( -p) 

+ 'Y5'Y2'Y°V;( -p)e-;PZd;( -p)]. 

Using the elementary relations 

'Y°S[L(-pt1] = S[L(P-l)hO, 

'Y5S[L(Pt1] = -S[L(Pt1h 5
, (30) 

'Y2S[L(Pt1] = S[L(Pt1]*'Y5, 

one obtains the equations 

U(i,)-lC.(p)U(i,) = nT(-I)'c.+l(-p) (mod 2), (31) 

U(i,)-ld:(P)U(i,) = nT( -1)' d!+l( -p) (mod 2). 

In the derivation it is important to remember that 
U(i.) is antiunitary, i.e., 

U(i,)-l1/t(X)U(i,) = (211")-! J d3p (;at 
X L [u~(p)eiPZU(i,tlc.(P)U(i,) 

• 
+ v~(p)e-iPZU(i,)-ld:(P)U(i,)]. 

Equation (31) leads to the transformation law in 
Fock space 

[U(i,)f·O](P). = nH-l),f·oO(-p).+1 (mod 2), 

[U(i,)f·1](p). = nT( -lri°' JO
( -P)r+l (mod 2). 

Notice that always U(i,)2 = -I. 

c. Charge Conjugation 

This is given by the unitary transformation C, 

C1/t(x)C-1 = A'Y°T1/t\x), 

where T denotes the transposed matrix and A satisfies 

A -1'Y~ A = _'Y~T. 

In our case A = nc'Y
2
'Y

0
, Incl = 1. An argument 

completely analogous to the one used in the two 
previous cases gives the final result 

(Cr·~(p). = -in~(-lr+lf·l(p)'+1 (mod 2), 

(Cf·1)(P). = in c(-IYf1' 0 (P).+1' (mod 2). 
(33) 

At first sight, one might think that Eq. (33) implies 

changing the z component of the spin on charge 
conjugation. This is not so. The spin generators 
SU and s' in the two subspaces are not the same, they 
are related through Eq. (26). 

Matrix elements of the type Ui(p)rUj(p), where r 
is some linear combination of the sixteen independent 
products of 'Y matrices, can easily be evaluated. By 
means of the relation S+(AhO = 'Y°S(A)-l and Eqs. 
(3), (4), and (7) they can be put into the form 
U; (p) r' (p )u; (p) where r' (p) is again a linear com­
bination of products of 'Y matrices, the coefficients 
being functions of p. The terms which contain an 
odd number of 'Y\ k = 1, 2, 3, do not contribute 
and one merely has to take the i, j element of the 
remaining terms which can contain 'Yo or 'Yk'Yl. Sums 
of the form 2:; u.(p)ru,(p) are even simpler as 'Yo 
is the only 'Y matrix whose trace over the upper left 
block does not vanish. The same is true for matrix 
elements which involve the spinors Vi (p). 

The solutions u;(p) and vi(p) used in this paper 
are the center-of-mass spin eigenfunctions. They 
are related to the more customary eigenspinors of 
the helicity operator h(p) = i Ipl-l 'Y0'Y5'Y'P in the 
following way: first of all 

[h(P), 'YO] = 0, 

and so one can solve the eigenvalue equation 

where the coefficients a± (p); depend on p. In addi­
tion, using Eqs. (3) and (4) one verifies 

[S(L(Pt1), h(P)] = 0, 

implying that the spinors u±(p) = Lj a±(p);uj(P) 
satisfy both 

and 

h(P)u±(P) = ±u±(P). 

The same procedure applies to the spinors v(p). 
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